This repository has been archived by the owner on May 4, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreco.py
162 lines (132 loc) · 5.08 KB
/
reco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import cv2
import face_recognition
import glob
'''
This is a demo of running face recognition on live video using webcam.
It includes some basic performance tweaks to make things run a lot faster:
1. Process each video frame at 1/2 resolution
2. Only detect faces in every other frame of video.
'''
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
def load_images(path, known_face_encodings, known_face_names):
'''
Function to get face encoding and name of the person
from the image file name
Parameters
----------
path: String
containing the path of Image Folder
known_face_encodings: List
Stores face Encoding
known_face_names: List
Stores name of the persons
Returns
-------
known_face_encodings: List
known_face_names: List
updated list of the data
'''
files = glob.glob(path)
for imag in files:
name = imag[65:-4]
load_image = face_recognition.load_image_file(imag)
known_face_encodings.append(
face_recognition.face_encodings(load_image)[0])
known_face_names.append(name)
return known_face_encodings, known_face_names
def recognise(known_face_encodings, known_face_names):
'''
Function to open webcam and recognise faces
Parameters
----------
known_face_encodings: List
Stores face Encoding
known_face_names: List
Stores name of the persons
Returns
-------
None
'''
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
unique = []
i = 0
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size
# for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses)
# to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(
rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = list(face_recognition.face_distance(
known_face_encodings, face_encoding))
name = "Unknown"
# If a match was found in known_face_encodings,
# just use the first one.
if len(matches) != 0:
if min(matches) <= 0.6:
match_index = matches.index(min(matches))
name = known_face_names[match_index]
if name == 'Unknown':
i += 1
known_face_encodings.append(face_encoding)
name = 'Unknown' + str(i)
known_face_names.append(name)
face_names.append(name)
process_this_frame = not process_this_frame
for name in face_names:
if name not in unique:
unique.append(name)
count = len(unique)
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame
# we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top),
(right, bottom), (255, 0, 255), 1)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 30),
(right, bottom), (255, 0, 255), -1)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6),
font, 0.75, (0, 255, 0), 1)
# to show the count of people
cv2.rectangle(frame, (0, 0), (30, 30), (255, 0, 255), -1)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, str(count), (6, 24), font, 0.75, (0, 255, 0), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
print known_face_names
print unique
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
known_face_encodings = []
known_face_names = []
path = '//home//prashant//Documents//Face_reco//face_recognition//Images//*.jpg'
known_face_encodings, known_face_names = load_images(
path, known_face_encodings, known_face_names)
recognise(known_face_encodings, known_face_names)