-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_simcse.py
70 lines (59 loc) · 2.65 KB
/
model_simcse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# modified from https://github.com/maszhongming/MatchSum
import torch
from torch import nn
from transformers import AutoModel
def RankingLoss(score, summary_score=None, margin=0, gold_margin=0, gold_weight=1, no_gold=False, no_cand=False):
ones = torch.ones_like(score)
loss_func = torch.nn.MarginRankingLoss(0.0)
TotalLoss = loss_func(score, score, ones)
# candidate loss
n = score.size(1)
if not no_cand:
for i in range(1, n):
pos_score = score[:, :-i]
neg_score = score[:, i:]
pos_score = pos_score.contiguous().view(-1)
neg_score = neg_score.contiguous().view(-1)
ones = torch.ones_like(pos_score)
loss_func = torch.nn.MarginRankingLoss(margin * i)
loss = loss_func(pos_score, neg_score, ones)
TotalLoss += loss
if no_gold:
return TotalLoss
# gold summary loss
pos_score = summary_score.unsqueeze(-1).expand_as(score)
neg_score = score
pos_score = pos_score.contiguous().view(-1)
neg_score = neg_score.contiguous().view(-1)
ones = torch.ones_like(pos_score)
loss_func = torch.nn.MarginRankingLoss(gold_margin)
TotalLoss += gold_weight * loss_func(pos_score, neg_score, ones)
return TotalLoss
class ReRanker(nn.Module):
def __init__(self, encoder, pad_token_id):
super(ReRanker, self).__init__()
self.encoder = AutoModel.from_pretrained(encoder)
self.pad_token_id = pad_token_id
def forward(self, text_id, candidate_id, summary_id=None, require_gold=True):
batch_size = text_id.size(0)
input_mask = text_id != self.pad_token_id
out = self.encoder(text_id, attention_mask=input_mask)[0]
doc_emb = out[:, 0, :]
if require_gold:
# get reference score
input_mask = summary_id != self.pad_token_id
out = self.encoder(summary_id, attention_mask=input_mask)[0]
summary_emb = out[:, 0, :]
summary_score = torch.cosine_similarity(summary_emb, doc_emb, dim=-1)
candidate_num = candidate_id.size(1)
candidate_id = candidate_id.view(-1, candidate_id.size(-1))
input_mask = candidate_id != self.pad_token_id
out = self.encoder(candidate_id, attention_mask=input_mask)[0]
candidate_emb = out[:, 0, :].view(batch_size, candidate_num, -1)
# get candidate score
doc_emb = doc_emb.unsqueeze(1).expand_as(candidate_emb)
score = torch.cosine_similarity(candidate_emb, doc_emb, dim=-1)
output = {'score': score}
if require_gold:
output['summary_score'] = summary_score
return output