-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_fast.py
203 lines (161 loc) · 6.96 KB
/
demo_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from __future__ import absolute_import
import os
import glob
import json
import cv2
import numpy as np
import time
from tracker import *
best = None
if best is not None:
with open(best, 'r') as f:
best_str = f.readlines()
else:
best_str = None
from util import backup_file
def iou(bbox1, bbox2):
"""
Calculates the intersection-over-union of two bounding boxes.
Args:
bbox1 (numpy.array, list of floats): bounding box in format x,y,w,h.
bbox2 (numpy.array, list of floats): bounding box in format x,y,w,h.
Returns:
int: intersection-over-onion of bbox1, bbox2
"""
bbox1 = [float(x) for x in bbox1]
bbox2 = [float(x) for x in bbox2]
(x0_1, y0_1, w1_1, h1_1) = bbox1
(x0_2, y0_2, w1_2, h1_2) = bbox2
x1_1 = x0_1 + w1_1
x1_2 = x0_2 + w1_2
y1_1 = y0_1 + h1_1
y1_2 = y0_2 + h1_2
# get the overlap rectangle
overlap_x0 = max(x0_1, x0_2)
overlap_y0 = max(y0_1, y0_2)
overlap_x1 = min(x1_1, x1_2)
overlap_y1 = min(y1_1, y1_2)
# check if there is an overlap
if overlap_x1 - overlap_x0 <= 0 or overlap_y1 - overlap_y0 <= 0:
return 0
# if yes, calculate the ratio of the overlap to each ROI size and the unified size
size_1 = (x1_1 - x0_1) * (y1_1 - y0_1)
size_2 = (x1_2 - x0_2) * (y1_2 - y0_2)
size_intersection = (overlap_x1 - overlap_x0) * (overlap_y1 - overlap_y0)
size_union = size_1 + size_2 - size_intersection
return size_intersection / size_union
def eval(out_res, label_res):
measure_per_frame = []
for _pred, _gt in zip(out_res, label_res):
measure_per_frame.append(iou(_pred, _gt))
return np.mean(measure_per_frame)
def main(video_root, save_note, tracker_name, dataset_name, visulization=False, set_video_name=''):
# setup tracker
opts['model_path'] = './models/rt_mdnet.pth'
opts['visual_log'] = False
# setup experiments
with open(os.path.join(video_root, 'list.txt'), 'r') as f:
video_paths = f.readlines()
video_paths = [v.strip() for v in video_paths]#[1:]
video_num = len(video_paths)
history_search = [10, ]
nms_search = [0.2, ]
iter_time = 1
for i in range(iter_time):
for history in history_search:
for nms in nms_search:
s = save_note.format(i, history, nms)
output_dir = os.path.join('result', dataset_name, tracker_name, s)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
backup_file([__file__, 'tracker.py', 'modules/graph_match.py', 'motion_model.py'], output_dir)
overall_performance = {}
if use_time:
pass
else:
set_video_name = ''
# run tracking experiments and report performance
for video_id, video_name in enumerate(video_paths, start=1):
print(video_id, video_name)
if len(set_video_name) > 0 and set_video_name not in video_name:
continue
video_path = os.path.join(video_root, video_name, 'img')
frame_list = os.listdir(video_path)
frame_list.sort()
try:
res_file = os.path.join(video_root, video_name, 'groundtruth_rect.txt')
label_res = np.loadtxt(res_file, delimiter=',')[0]
init_rect = label_res
except:
res_file = os.path.join(video_root, video_name, 'groundtruth.txt')
with open(res_file, 'r') as f:
info = f.readline()
init_rect = list(map(float, info.strip().split(',')))
total_time = 0
image_list = []
for frame_id, frame_name in enumerate(frame_list):
image_list.append(os.path.join(video_path, frame_name))
imgs = load_img(image_list)
for i in range(iter_time):
for history in history_search:
for nms in nms_search:
s = save_note.format(i, history, nms)
output_dir = os.path.join('result', dataset_name, tracker_name, s)
# print('[{}]'.format(i) + s)
start_time = time.time()
# try:
iou_result, result_bb, fps, result_nobb, object_num_list = run_mdnet(image_list, init_rect, None, seq =video_name, display=visulization,
history_step=history, nms_overlap=nms, imgs=imgs)
# except BaseException as e:
# print(s, e)
# continue
# save result
spend_time = time.time() - start_time
output_file = os.path.join(output_dir, '%s_time.txt' % (video_name))
with open(output_file, 'w') as f:
f.write('{}\n{}\n{}\n'.format(spend_time, len(result_bb), len(result_bb) / spend_time))
output_file = os.path.join(output_dir, '%s.txt' % (video_name))
np.savetxt(output_file, np.array(result_nobb), delimiter=',')
# mixed_measure = eval(result_nobb, label_res)
# if s in overall_performance:
# overall_performance[s].append(mixed_measure)
# else:
# overall_performance[s] = [mixed_measure]
# print_str = '[%03d/%03d] %20s Fixed Measure: %.03f. FPS: %.04f' % (video_id, video_num, video_name, mixed_measure, fps)
# print(print_str)
# with open(os.path.join(output_dir, 'log.txt'), 'a') as f:
# f.write(print_str + '\n')
for i in range(iter_time):
for history in history_search:
for nms in nms_search:
s = save_note.format(i, history, nms)
if s not in overall_performance:
continue
print_str = '[Overall] Mixed Measure: %.03f\n ' % (np.mean(overall_performance[s]))
with open(os.path.join('result_vatsot', dataset_name, tracker_name, s, 'log.txt'), 'a') as f:
f.write(print_str + '\n')
def load_img(img_list):
imgs = []
import tqdm
for im_name in tqdm.tqdm(img_list):
im = Image.open(im_name).convert('RGB')
imgs.append(im)
return imgs
if __name__ == '__main__':
root = '' # dataset root
tracker_name = 'GAMO'
use_time = True
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
dataset_list = ['SV248S']
set_name = ''
for dataset_name in dataset_list:
print(dataset_name)
if use_time:
save_note += time.strftime(fmt, time.localtime(time.time()))
else:
save_note += '-debug'
video_root = os.path.join(root, dataset_name)
save_note = tracker_name + '{}-_RT-motion_enlarge-{:02d}-graph_match-{}'
fmt = ' --- %Y-%m-%d %a %H:%M'
save_note += time.strftime(fmt, time.localtime(time.time()))
main(video_root, save_note, tracker_name, dataset_name, visulization=not use_time, set_video_name=set_name)