Skip to content

Latest commit

 

History

History
482 lines (359 loc) · 13.6 KB

README_BUILD_EN.md

File metadata and controls

482 lines (359 loc) · 13.6 KB

AIoT Sensing Platform

Project Development Description

Prerequisites

  • Frontend Environment:
    • node (v16.x)
    • pnpm
  • Java JDK11
  • Database (postgresql, Cassandra)
  • Maven,3.6.0+ (Optional, some IDEs equipped)
  • Docker
  • MQTT Client Tool

Project Structure

./msaiotsensingplatform/
├── application # Main application module, all functional moduels in a monolithic architecture
│   ├── src/main/conf   # Configuration files
├── dao           # Implementation classes for database query interfaces
├── img           # Logo image
├── msa             # Modules implementing microservice architecture
│   ├── tb          # Docker packaging files
│   ├── tb-node     # Docker implementation for horizontal scaling of ThingBoard nodes
│   ├── transport   # Docker running server for various protocols
├── netty-mqtt      # MQTT client implemented with Netty, referenced by rule-engine module
├── packaging   # Project build resources
├── common      # Common modules
│   ├── actor   # Cusstom actor system
│   ├── dao-api # Database query interfaces
│   ├── data    # Domain models (Java classes corresponding to database tables)
│   ├── message # System messaging mechanism implementation
│   ├── queue   # Message queue
│   ├── stats   # Statistics
│   ├── transport # Server for receiving device messages
│   │   ├── coap  
│   │   ├── http  
│   │   ├── mqtt  
│   │   └── transport-api
│   └── util      # Utilities
├── rest-client      # Java API client which can call the same interfaces as webpages(login, query devices, etc.)
├── rule-engine      # Rule engine
│   ├── rule-engine-api
│   └── rule-engine-components
├── transport        # Independent Java processes for various protocol servers, code references common/transport
└── web              # Webpages implemented with Vue.js

Installation-1. Compile the Project

Fork the Repository

https://github.com/Milesight-IoT/aiot-sensing-platform.git

Go to Project Directory

cd aiot-sensing-platform

Frontend Compile

1. Install pnpm
# Install once only
npm install -g pnpm
2. Install dependencies
pnpm install
3. Build frontend files
pnpm build

Check if the files are complied correctly:

ls application\src\main\resources\static

Backend Compile

1. Execute compile file
 mvn clean install -DskipTests
2. Compile file location

msaiotsensingplatform.deb file is under application folder.

If parts of dependencies are not able to fetch during compile execution, please refer to below example to modify the repository configuration in maven/setting.xmlfile:

  <profiles>
    <profile>
        <id>nexus</id>
        <!--Enable snapshots for the built in central repo to direct -->
        <!--all requests to nexus via the mirror -->
        <repositories>
            <repository>
                <id>central1</id>
                <url>http://120.25.59.85:8081/nexus/content/groups/public</url>
                <releases>
                    <enabled>true</enabled>
                </releases>
                <snapshots>
                    <enabled>true</enabled>
                </snapshots>
            </repository>
            <repository>
                <id>central</id>
                <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
                <name>aliyun</name>
            </repository>
        </repositories>

        <pluginRepositories>
            <pluginRepository>
                <id>central</id>
                <url>http://maven.aliyun.com/nexus/content/groups/public/</url> 
                <releases>
                    <enabled>true</enabled>
                </releases>
                <snapshots>
                    <enabled>true</enabled>
                </snapshots>
            </pluginRepository>
        </pluginRepositories>
    </profile> 

    <profile>
       <id>sonar</id>
       <activation>
          <activeByDefault>true</activeByDefault>
       </activation>
       <properties>
          <sonar.jdbc.url>jdbc:postgresql://120.25.59.85:5433/sonar</sonar.jdbc.url>
          <sonar.jdbc.driver>org.postgresql.Driver</sonar.jdbc.driver>
          <sonar.jdbc.username>postgres</sonar.jdbc.username>
          <sonar.jdbc.password>postgres</sonar.jdbc.password>
          <!-- SERVER ON A REMOTE HOST -->
          <sonar.host.url>http://120.76.241.24:9990</sonar.host.url>
          <sonar.scm.disabled>true</sonar.scm.disabled>
       </properties>
    </profile>
  </profiles> 

  <activeProfiles>
    <!--make the profile active all the time -->
    <activeProfile>nexus</activeProfile>
  </activeProfiles> 

Installation-2. Install Compile File Locally

Prerequisites

Hardware
  • RAM: 1 GB for AIoT Sensing Platform and PostgreSQL, or 4-8 GB for AIoT Sensing Platform, PostgreSQL and Cassandra

  • Other requirements depends on the database and device amounts

Operating System
  • Ubuntu Kinetic 22.10
  • Ubuntu Jammy 22.04 (LTS)
  • Ubuntu Focal 20.04 (LTS)
  • Ubuntu Bionic 18.04 (LTS)

Install AIoT Sensing Platform to Ubuntu Server

1. Install JAVA 11 (OpenJDK)
sudo apt update
sudo apt install openjdk-11-jdk

Check installation status:

java -version

Result of install success:

openjdk version "11.0.xx"
OpenJDK Runtime Environment (...)
OpenJDK 64-Bit Server VM (build ...)
2. Install Deb Package
sudo dpkg -i msaiotsensingplatform.deb
3. Configure the Database

Add configurations of PostgreSQL database and Cassandra database as required.

4. Modify Configuration File
# Configure JAVA_OPTS parameter as environment
# Change the path of configuration file (The source file is under application), for example
export LOADER_PATH=${pkg.installFolder}/conf,${pkg.installFolder}/extensions
export SQL_DATA_FOLDER=${pkg.installFolder}/data/sql

Example:

# Merge into one line if JAVA_OPTS is not able to execute
export JAVA_OPTS="$JAVA_OPTS [email protected]@ [email protected]@/data"
export JAVA_OPTS="$JAVA_OPTS -Xlog:gc*,heap*,age*,safepoint=debug:[email protected]@/gc.log:time,uptime,level,tags:filecount=10,filesize=10M"
export JAVA_OPTS="$JAVA_OPTS -XX:+IgnoreUnrecognizedVMOptions -XX:+HeapDumpOnOutOfMemoryError"
export JAVA_OPTS="$JAVA_OPTS -XX:-UseBiasedLocking -XX:+UseTLAB -XX:+ResizeTLAB -XX:+PerfDisableSharedMem -XX:+UseCondCardMark"
export JAVA_OPTS="$JAVA_OPTS -XX:+UseG1GC -XX:MaxGCPauseMillis=500 -XX:+UseStringDeduplication -XX:+ParallelRefProcEnabled -XX:MaxTenuringThreshold=10"
# Project runtime variables
export LOG_FILENAME=msaiotsensingplatform.out
export LOADER_PATH=/usr/share/msaiotsensingplatform/conf,/usr/share/msaiotsensingplatform/extensions
export SQL_DATA_FOLDER=/usr/share/msaiotsensingplatform/data/sql

# See configurations on msaiotsensingplatform.yml
# POSTGRESQL configuration
export SPRING_DRIVER_CLASS_NAME=org.postgresql.Driver
export SPRING_DATASOURCE_URL=jdbc:postgresql://localhost:5432/msaiotsensingplatform
export SPRING_DATASOURCE_USERNAME=msaiotsensingplatform
export SPRING_DATASOURCE_PASSWORD=password
# CASSANDRA
export CASSANDRA_KEYSPACE_NAME=msaiotsensingplatform
export CASSANDRA_HOME=/opt/cassandra
export CASSANDRA_URL=localhost:9042 
export CASSANDRA_USERNAME=
export CASSANDRA_PASSWORD=
5. Run install script
sudo /usr/share/msaiotsensingplatform/bin/install/install.sh --loadDemo
6. Start the service

Execute the command to start the AIoT Sensing Platform:

sudo service msaiotsensingplatform start

Open the Web GUI of AIoT Sensing platform:

http://localhost:8080/

Install AIoT Sensing Platform to Docker

1. Go to the Directory of File Package
cd msa/tb/docker-iot
2. Put deb Package

Copy the deb package after complied to directory msa/tb/docker-iot.

3. Build Docker Image
# Build image
docker build -t msaiotsensingplatform:test . 
# Package the image as tar
docker save msaiotsensingplatform:test -o msaiotsensingplatform.tar
4. Push Image

Load docker image:

# Install docker image
docker load < ~/msaiotsensingplatform.tar

Create docker compose file:

#Create docker compose file
nano docker-compose.yml

Add below contents to docker-compose.yml file:

version: '3.0'
services:
  mysp:
    restart: always
    image: "msaiotsensingplatform:test"
    ports:
      - "8080:9090"
      - "1883:1883"
      - "7070:7070"
      - "5683-5688:5683-5688/udp"
    environment:
      TB_QUEUE_TYPE: in-memory 
    volumes:
      - /var/mysp-data:/data
      - /var/mysp-logs:/var/log/msaiotsensingplatform

Parameter introduction:

  • 8080:9090 - connect local port 5220 to exposed internal HTTP port 9090, and both of them should not be changed, otherwise the platform may not work well.
  • 1883:1883 - connect local port 1883 to exposed internal MQTT port 1883. The local port will be used on SC series camera configurations.
  • 7070:7070 - connect local port 7070 to exposed internal Edge RPC port 7070.
  • 5683-5688:5683-5688/udp - connect local UDP ports 5683-5688 to exposed internal COAP and LwM2M ports.
  • mysp - friendly local name of this machine
  • restart:always - automatically start AIoT Sensing platform in case of system reboot and restart in case of failure.
  • image:msaiotsensingplatform:test - image name
  • /var/mysp-data:/data - mounts the host’s dir /var/mysp-data to platform DataBase data directory
  • /var/mysp-logs:/var/log/msaiotsensingplatform - mounts the host’s dir /var/mysp-logs to platform logs directory
5. Create User Permissions for New Folders
sudo useradd -m msaiotsensingplatform
# ignore the exist error
sudo groupadd msaiotsensingplatform 
sudo usermod -aG msaiotsensingplatform msaiotsensingplatform
mkdir -p /var/mysp-data && sudo chown -R msaiotsensingplatform:msaiotsensingplatform /var/mysp-data
chmod -R 777 /var/mysp-data
mkdir -p /var/mysp-logs && sudo chown -R msaiotsensingplatform:msaiotsensingplatform /var/mysp-logs
chmod -R 777 /var/mysp-logs
6. Run the image

Start the image:

docker compose up -d

Open the Web GUI of AIoT Sensing platform:

http://localhost:8080/

More Use

Reference

Milesight documentation:

ThingsBoard documentation:


Hot Issues

How to Connect Devices to Platform?

Please follow below steps to configure devices to connect to AIoT Sensing Platform:

  1. Ensure the device has connected to the network and is able to access to the platform;
  2. Select the data report platform as Sensing Platform and configure settings as below:
Post Type: MQTT
Host:IP address of AIoT Sensing Platform
MQTT Port:1883
Client ID: Device SN
Username:Device SN
Password:(leave blank)
Topic: v1/devices/me/telemetry

Telemetry Data Content

The devices will report the picture information in json format to platform.

Data Example:

{
    ts:1725904500258, //capture timestamp, unit: ms
    data:{
        "image":"...(Image code)",
        // Other properties....
        
    }
}

Rule Engine Introduction

AIoT Sensing Platform supports to select below trigger conditions to send data to third-party recipients via MQTT/HTTP protocols, or show the results on the dashboard.

  • Once data received:Once the platform receive the data of sensing objects, it will send the picture data in json format to MQTT/HTTP recipients.
  • Low battery:Once the battery level of device is lower than the threshold value, the platform will send the low battery alarm to MQTT/HTTP recipients or show it on the widgets of dashboard.
# Alarm report format
{
  "threshold":10 //Battery level
}
  • Devices become inactive:Once the device becomes inactive, the platform will send the device offline alarm to MQTT/HTTP recipients or show it on the widgets of dashboard.
  • Once result recognized: Once the sensing platform receives the recognized results of sensing objects on the pictures from AIoT Inference Platform, it will send the results in json format to MQTT/HTTP recipients.

Contributing

Welcome to contribute to this project following below steps:

  1. Fork this repository
  2. Create a branch to work on (git checkout -b feature/AmazingFeature)
  3. Make and commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push your changes to branch (git push origin feature/AmazingFeature)
  5. Make a pull request

Community

Welcome to join the community to get involved in this project to report bugs, share the experiences, make discussions:

About Milesight

License

This project is released under the MIT license. See also LICENSE.