-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathexp.py
565 lines (442 loc) · 25.7 KB
/
exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import logging
import time
import logging
import pickle
import numpy as np
from time import sleep
from multiprocessing import Pool
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Subset, DataLoader
from models import MLP, DT, RF, LR, DNN
from utils import DataStore
from lib_unlearning.record_split import RecordSplit
from lib_unlearning.attack import Attack
from lib_unlearning.construct_feature import ConstructFeature
import config
class Exp:
def __init__(self, args):
self.logger = logging.getLogger("exp")
self.args = args
self.dataset_name = self.args["dataset_name"]
self.original_model = self.args["original_model"]
assert self.args['shadow_set_size'] >= self.args['shadow_unlearning_size']
assert self.args['target_set_size'] >= self.args['target_unlearning_size']
self.logger.info(args)
self.logger.info("Experiment Start! %s %s %s %s %s %s %s %s %s %s %s" % (self.args['unlearning_method'],
self.args['dataset_name'],
self.args['original_label'],
self.args['original_model'],
self.args['shadow_set_num'],
self.args['shadow_set_size'],
self.args['shadow_unlearning_size'],
self.args['shadow_unlearning_num'],
self.args['shadow_num_shard'],
self.args['attack_model'],
self.args['top_k']))
self.load_data()
def load_data(self):
self.logger.info('loading data')
self.data_store = DataStore(self.args)
self.save_name = self.data_store.save_name
self.df, self.num_records, self.num_classes = self.data_store.load_raw_data()
self.data_store.create_basic_folders()
self.logger.info('loaded data')
def determine_original_model(self):
self.logger.debug('determining original model')
if self.original_model == 'LR':
return LR()
elif self.original_model == 'DT':
return DT()
elif self.original_model == 'MLP':
return MLP()
elif self.original_model == 'RF':
return RF()
elif self.original_model == 'LRTorch':
return DNN(net_name='logistic', num_classes=self.num_classes, args=self.args)
elif self.original_model == 'scnn':
return DNN(net_name='simple_cnn', num_classes=self.num_classes, args=self.args)
elif self.original_model == 'resnet50':
return DNN(net_name='resnet50', num_classes=self.num_classes, args=self.args)
elif self.original_model == 'densenet':
return DNN(net_name='densenet', num_classes=self.num_classes, args=self.args)
elif self.original_model == 'MLPTorch':
return DNN(net_name='mlp', num_classes=self.num_classes, args=self.args)
else:
raise Exception("invalid original model")
class ExpModelTrain(Exp):
def __init__(self, args):
super(ExpModelTrain, self).__init__(args)
self.args = args
def split_records(self):
split_para = self.num_records
self.record_split = RecordSplit(split_para, args=self.args)
self.record_split.split_shadow_target()
self.record_split.sample_records(self.args['unlearning_method'])
self.data_store.save_record_split(self.record_split)
def train_shadow_model(self):
self.logger.info("training shadow model")
path = config.SHADOW_MODEL_PATH + self.save_name + "/"
self.data_store.create_folder(path)
self.train_models(self.args['shadow_set_num'], self.args['shadow_num_shard'], path, "shadow")
def train_target_model(self):
self.logger.info("training target model")
path = config.TARGET_MODEL_PATH + self.save_name + "/"
self.data_store.create_folder(path)
self.train_models(self.args['target_set_num'], self.args['target_num_shard'], path, "target")
def train_models(self, num_sample, num_shard, save_path, model_type):
pass
def _train_model(self, sample_set_indices, save_name, i, j):
self.logger.info("training start, set %s, unlearning %s" % (i, j))
original_model = self.determine_original_model()
if self.dataset_name in ["adult", "accident", 'location']:
train_x = self.df.iloc[sample_set_indices, :-1].values
train_y = self.df.iloc[sample_set_indices, -1].values
if self.args['unlearning_method'] == "sisa" and self.dataset_name == "location":
train_x = np.concatenate((train_x, np.zeros((9, train_x.shape[1]))))
train_y = np.concatenate((train_y, np.arange(9)))
original_model.train_model(train_x, train_y, save_name=save_name)
elif self.dataset_name in ["mnist", "cifar10", 'stl10']:
train_dataset = Subset(self.df, sample_set_indices)
train_loader = DataLoader(dataset=train_dataset, batch_size=self.args['batch_size'], shuffle=True)
test_dataset = Subset(self.df, self.record_split.target_set[0]["set_indices"])
test_loader = DataLoader(dataset=test_dataset, batch_size=self.args['batch_size'], shuffle=True)
original_model.train_model(train_loader, test_loader=test_loader, save_name=save_name)
else:
raise Exception("invalid dataset name")
self.logger.debug("training finished, set %s, unlearning %s" % (i, j))
class ExpModelTrainScratch(ExpModelTrain):
def __init__(self, args):
super(ExpModelTrainScratch, self).__init__(args)
self.logger = logging.getLogger("exp_model_train_scratch")
self.args = args
if self.args['is_sample']:
self.split_records()
self.determine_original_model()
self.train_shadow_model()
self.train_target_model()
def train_models(self, num_sample, num_shard, save_path, model_type):
if not self.args['is_sample']:
self.record_split = pickle.load(open(config.SPLIT_INDICES_PATH + self.save_name, 'rb'))
# data split
self.record_split.generate_sample(model_type)
if self.args['is_train_multiprocess']:
p = Pool(50, maxtasksperchild=1)
import psutil
ps = psutil.Process()
cores = ps.cpu_affinity()
ps.cpu_affinity(cores[0:50])
for sample_index in range(num_sample):
sample_set = self.record_split.sample_set[sample_index]
sample_indices = sample_set["set_indices"]
unlearning_set = sample_set["unlearning_set"]
save_name_original = save_path + "original_S" + str(sample_index)
self._train_model(sample_indices, save_name_original, sample_index, j=0)
for unlearning_set_index, unlearning_indices in unlearning_set.items():
self.logger.debug("training %s model: sample set %s | unlearning set %s" % (model_type, sample_index, unlearning_set_index))
# case = "deletion"
unlearning_train_indices = np.setdiff1d(sample_indices, unlearning_indices)
# case = "online_learning"
if self.args['samples_to_evaluate'] == "online_learning":
replace_indices = np.random.choice(self.record_split.replace_indices, size=unlearning_indices.shape[0], replace=False)
unlearning_train_indices = np.append(unlearning_train_indices, replace_indices)
save_name_unlearning = save_path + "_".join(
("unlearning_S" + str(sample_index), str(unlearning_set_index)))
if self.args['is_train_multiprocess']:
p.apply_async(self._train_model, args=(unlearning_train_indices, save_name_unlearning, sample_index, unlearning_set_index))
sleep(0.5)
else:
self._train_model(unlearning_train_indices, save_name_unlearning, sample_index, unlearning_set_index)
if self.args['is_train_multiprocess']:
p.close()
p.join()
class ExpModelTrainSISA(ExpModelTrain):
def __init__(self, args):
super(ExpModelTrainSISA, self).__init__(args)
self.args = args
self.logger = logging.getLogger("exp_model_train_sisa")
if self.args['is_sample']:
self.split_records()
self.determine_original_model()
self.train_shadow_model()
self.train_target_model()
def train_models(self, num_sample, num_shard, save_path, model_type):
if not self.args['is_sample']:
self.record_split = pickle.load(open(config.SPLIT_INDICES_PATH + self.save_name, 'rb'))
self.record_split.generate_sample(model_type)
p = Pool(20, maxtasksperchild=1)
import psutil
ps = psutil.Process()
cores = ps.cpu_affinity()
ps.cpu_affinity(cores[0:int(len(cores)/2)])
for i in range(num_sample):
sample_set = self.record_split.sample_set[i]
shard_set = sample_set["shard_set"]
unlearning_indices = sample_set["unlearning_indices"]
unlearning_shard_mapping = sample_set["unlearning_shard_mapping"]
# train original model
for j in range(num_shard):
save_name = save_path + "original_S%s_M%s" % (i, j)
self._train_model(shard_set[j], save_name, i, j)
# train unlearning models
for j in unlearning_indices:
self.logger.debug("training %s model set %s unlearning %s" % (model_type, i, j))
shard_index = unlearning_shard_mapping[j]
shard_indices = shard_set[shard_index]
indices = np.delete(shard_indices, np.where(shard_indices == j)[0])
save_name_unlearning = save_path + "unlearning_S%s_M%s" % (i, shard_index) + "_" + str(j)
p.apply_async(self._train_model, args=(indices, save_name_unlearning, i, j))
# sleep(0.1)
# self._train_model(indices, save_name_unlearning, i, j)
p.close()
p.join()
class ExpMemInf(Exp):
def __init__(self, args):
super(ExpMemInf, self).__init__(args)
self.args = args
def load_split_record(self):
self.record_split = self.data_store.load_record_split()
def obtain_shadow_posterior(self):
self.logger.info("obtaining shadow posterior")
path = config.SHADOW_MODEL_PATH + self.save_name + "/"
self.shadow_posterior_df = self._obtain_posterior(self.args['shadow_set_num'], self.args['shadow_num_shard'], "shadow", path)
self.construct_feature(self.shadow_posterior_df)
self._save_posterior(self.shadow_posterior_df, config.SHADOW_MODEL_PATH)
self.logger.info("obtained shadow posterior")
def obtain_target_posterior(self):
self.logger.info("obtaining target posterior")
path = config.TARGET_MODEL_PATH + self.save_name + "/"
self.target_posterior_df = self._obtain_posterior(self.args['target_set_num'], self.args['target_num_shard'], "target", path)
self.construct_feature(self.target_posterior_df)
self._save_posterior(self.target_posterior_df, config.TARGET_MODEL_PATH)
self.logger.info("obtained target posterior")
def construct_feature(self, posterior_df):
self.logger.info("constructing feature")
feature = ConstructFeature(posterior_df)
if self.args['is_defense'] and self.args['top_k'] == 0:
posterior_df = feature.launch_label_defense(posterior_df)
elif self.args['is_defense'] and self.args['top_k'] != 0:
posterior_df = feature.launch_topk_defense(posterior_df, top_k=self.args['top_k'])
for method in ["direct_diff", "sorted_diff", 'direct_concat', 'sorted_concat', 'l2_distance', 'basic_mia']:
feature.obtain_feature(method, posterior_df)
def launch_attack(self):
self.logger.info("launching attack")
save_name = "_".join((self.save_name, self.args['attack_model']))
path = config.ATTACK_MODEL_PATH + save_name + "/"
self.data_store.create_folder(path)
if not self.args['is_obtain_posterior']:
self.shadow_posterior_df = self._load_posterior(config.SHADOW_MODEL_PATH)
self.target_posterior_df = self._load_posterior(config.TARGET_MODEL_PATH)
self.attack_posterior_train = pd.DataFrame(data=self.shadow_posterior_df["label"], columns=["label"])
self.attack_posterior_test = pd.DataFrame(data=self.target_posterior_df["label"], columns=["label"])
upload_data = {}
for method in ["direct_diff", "sorted_diff", 'direct_concat', 'sorted_concat', 'l2_distance', 'basic_mia']:
attack = Attack(self.args['attack_model'], self.shadow_posterior_df, self.target_posterior_df)
upload_data['train_acc'], upload_data['train_auc'] = attack.train_attack_model(method, path)
upload_data['test_acc'], upload_data['test_auc'] = attack.test_attack_model(method)
upload_data['attack_feature'] = method
attack.obtain_attack_posterior(self.attack_posterior_train, self.attack_posterior_test, method)
upload_data = {}
for method in ["direct_diff", "sorted_diff", 'direct_concat', 'sorted_concat', 'l2_distance', 'basic_mia']:
upload_data['conf_improve_rate_mean_train'], upload_data['conf_better_rate_train'] = \
Attack.calculate_comparison_metrics(self.attack_posterior_train, method)
upload_data['conf_improve_rate_mean_test'], upload_data['conf_better_rate_test'] = \
Attack.calculate_comparison_metrics(self.attack_posterior_test, method)
upload_data['attack_feature'] = method
def calculate_overfitting(self):
overfitting_min = 1.0
overfitting_max = 0.0
model_path = config.TARGET_MODEL_PATH + self.save_name + "/"
test_indices = self.record_split.shadow_set[0]["set_indices"]
for i in range(self.args['num_target_set']):
train_indices = self.record_split.target_set[i]["set_indices"]
if self.args['unlearning_method'] == "scratch":
train_accuracy = self._calculate_scratch_acc(model_path, i, train_indices)
test_accuracy = self._calculate_scratch_acc(model_path, i, test_indices)
elif self.args['unlearning_method'] == "sisa":
train_accuracy = self._calculate_sisa_acc(model_path, i, train_indices)
test_accuracy = self._calculate_sisa_acc(model_path, i, test_indices)
else:
raise Exception("invalid unlearning method")
overfitting = train_accuracy - test_accuracy
if overfitting <= overfitting_min:
overfitting_min = overfitting
if overfitting >= overfitting_max:
overfitting_max = overfitting
self.logger.info("%s model: train_accuracy: %s | test_accuracy: %s | overfitting: %s | "
"overfitting_min: %s ""| overfitting_max: %s"
% (i, train_accuracy, test_accuracy, overfitting, overfitting_min, overfitting_max))
return round(overfitting_min, 4), round(overfitting_max, 4)
def _obtain_posterior(self, num_sample, num_shard, sample_name, save_path):
pass
def _save_posterior(self, posterior_df, save_path):
pickle.dump(posterior_df, open(save_path + "_".join(("posterior", self.save_name)), 'wb'))
def _load_posterior(self, save_path):
return pickle.load(open(save_path + "_".join(("posterior", self.save_name)), 'rb'))
def _generate_test_case(self, index):
# Uncomment this to test categorical datasets on DNN models
# if self.dataset_name in ["adult", "accident", "location"]:
# labels = self.df.tensors[1]
# num_one = np.count_nonzero(labels)
# one_ratio = num_one / len(labels)
# case = self.df[index]
# label = case[1]
# feat = case[0].view(1, case[0].shape[1])
# return feat
if self.dataset_name == "adult":
return self.df.values[index, :14].reshape([1, 14])
elif self.dataset_name == "accident":
return self.df.values[index, :29].reshape([1, 29])
elif self.dataset_name == "location":
return self.df.values[index, :168].reshape([index.size, 168])
elif self.dataset_name in ["mnist", 'stl10', 'cifar10']:
case = self.df[index]
return case.unsqueeze(0)
else:
raise Exception("invalid test dataset")
def _calculate_scratch_acc(self, model_path, sample_index, indices):
model = self.determine_original_model()
model.load_model(model_path + "original_S" + str(sample_index))
dataset = torch.utils.data.Subset(self.df, indices)
data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=32, shuffle=True)
accuracy = model.test_model_acc(data_loader)
return accuracy
def _calculate_sisa_acc(self, model_path, sample_index, indices):
post_dict = {}
# calculate posterior
for shard_index in range(self.args['shadow_num_shard']):
save_name = model_path + "original_S%s_M%s" % (sample_index, shard_index)
model = self.determine_original_model()
model.load_model(save_name)
post_dict[shard_index] = model.predict_proba(self.df[indices])
# extract true label
if self.dataset_name in ["adult", "accident", "location"]:
true_labels = self.df.values[indices, -1]
elif self.dataset_name in ["mnist", "stl10", "cifar10"]:
true_labels = self.df.class_to_idx[indices]
# calculate predict label
posterior = post_dict[0]
for shard_index in range(1, self.args['shadow_num_shard']):
posterior += post_dict[shard_index]
posterior /= self.args['shadow_num_shard']
pred_labels = np.argmax(posterior, axis=1)
accuracy = np.count_nonzero(true_labels == pred_labels) / true_labels.size
return accuracy
class ExpMemInfScratch(ExpMemInf):
def __init__(self, args):
super(ExpMemInfScratch, self).__init__(args)
self.logger = logging.getLogger("exp_mem_inf_scratch")
self.args = args
self.load_split_record()
self.determine_original_model()
if self.args['is_obtain_posterior']:
self.obtain_shadow_posterior()
self.obtain_target_posterior()
self.launch_attack()
def _obtain_posterior(self, num_sample, num_shard, model_type, save_path):
self.record_split.generate_sample(model_type)
posterior_df = pd.DataFrame(columns=["original", "unlearning", "label"])
for sample_index in range(num_sample):
sample_set = self.record_split.sample_set[sample_index]
unlearning_set = sample_set["unlearning_set"]
save_name_original = save_path + "original_S" + str(sample_index)
model_original = self.determine_original_model()
model_original.load_model(save_name_original)
pos_case = self.args['samples_to_evaluate']
for unlearning_set_index, unlearning_indices in unlearning_set.items():
self.logger.debug("obtain posterior for %s model: sample set %s | unlearning set %s | unlearning"
% (model_type, sample_index, unlearning_set_index))
save_name_unlearning = save_path + "unlearning_S" + str(sample_index) + "_" + str(unlearning_set_index)
model_unlearning = self.determine_original_model()
model_unlearning.load_model(save_name_unlearning)
if pos_case == "in_out":
pass
elif pos_case == "in_in":
temp = np.setdiff1d(sample_set["set_indices"], unlearning_indices)
unlearning_indices = np.random.choice(temp, size=1, replace=False)
elif pos_case == "in_out_multi_version":
unlearning_indices = np.random.choice(unlearning_indices, size=1, replace=False)
else:
raise Exception("Unsupported positive cases.")
test_pos_case = self._generate_test_case(unlearning_indices)
post_before_pos = model_original.predict_proba(test_pos_case)
post_after_pos = model_unlearning.predict_proba(test_pos_case)
df = pd.DataFrame(columns=["original", "unlearning", "label"])
for index in range(post_before_pos.shape[0]):
df.loc[len(df)] = [post_before_pos[index].reshape([1, -1]), post_after_pos[index].reshape([1, -1]), 1]
neg_index = np.random.choice(self.record_split.negative_indices, size=unlearning_indices.size)
test_neg_case = self._generate_test_case(neg_index)
post_before_neg = model_original.predict_proba(test_neg_case)
post_after_neg = model_unlearning.predict_proba(test_neg_case)
for index in range(post_before_neg.shape[0]):
df.loc[len(df)] = [post_before_neg[index].reshape([1, -1]), post_after_neg[index].reshape([1, -1]), 0]
posterior_df = posterior_df.append(df, ignore_index=True)
return posterior_df
class ExpMemInfSISA(ExpMemInf):
def __init__(self, args):
super(ExpMemInfSISA, self).__init__(args)
self.logger = logging.getLogger("exp_mem_inf_sisa")
self.determine_original_model()
if self.args['is_obtain_posterior']:
self.obtain_shadow_posterior()
self.obtain_target_posterior()
self.launch_attack()
def _obtain_posterior(self, num_sample, num_shard, model_name, save_path):
posterior_df = pd.DataFrame(columns=["original", "unlearning", "label"])
self.load_split_record()
self.record_split.generate_sample(model_name)
for i in range(num_sample):
sample_set = self.record_split.sample_set[i]
unlearning_indices = sample_set["unlearning_indices"]
unlearning_shard_mapping = sample_set["unlearning_shard_mapping"]
neg_indices = np.random.choice(self.record_split.negative_indices, unlearning_indices.size, replace=False)
pos_posterior_original_dict = {}
neg_posterior_original_dict = {}
for shard_index in range(num_shard):
save_name = save_path + "original_S%s_M%s" % (i, shard_index)
model = self.determine_original_model()
model.load_model(save_name)
pos_posterior_original_dict[shard_index] = model.predict_proba(
self._generate_test_cases(unlearning_indices))
neg_posterior_original_dict[shard_index] = model.predict_proba(self._generate_test_cases(neg_indices))
pos_posterior_original = pos_posterior_original_dict[0]
neg_posterior_original = neg_posterior_original_dict[0]
for shard_index in range(1, num_shard):
pos_posterior_original += pos_posterior_original_dict[shard_index]
neg_posterior_original += neg_posterior_original_dict[shard_index]
# Shard posterior is the average posterior of total.
pos_posterior_original /= num_shard
neg_posterior_original /= num_shard
for j, pos_index in enumerate(unlearning_indices):
self.logger.debug("obtain posterior for %s model set %s unlearning %s" % (model_name, i, pos_index))
shard_index = unlearning_shard_mapping[pos_index]
save_name_unlearning = save_path + "unlearning_S%s_M%s" % (i, shard_index) + "_" + str(pos_index)
model = self.determine_original_model()
model.load_model(save_name_unlearning)
test_pos_case = self._generate_test_case(pos_index)
pos_posterior_unlearning = model.predict_proba(test_pos_case)
test_neg_case = self._generate_test_case(neg_indices[j])
neg_posterior_unlearning = model.predict_proba(test_neg_case)
for index in range(num_shard):
if index != shard_index:
pos_posterior_unlearning += pos_posterior_original_dict[index][j]
neg_posterior_unlearning += neg_posterior_original_dict[index][j]
pos_posterior_unlearning /= num_shard
neg_posterior_unlearning /= num_shard
posterior_df.loc[len(posterior_df)] = [pos_posterior_original[j].reshape((1, -1)),
pos_posterior_unlearning, 1]
posterior_df.loc[len(posterior_df)] = [neg_posterior_original[j].reshape((1, -1)),
neg_posterior_unlearning, 0]
return posterior_df
def _generate_test_cases(self, indices):
if self.dataset_name == "adult":
return self.df.values[indices, :14]
elif self.dataset_name == "accident":
return self.df.values[indices, :29]
elif self.dataset_name == "location":
return self.df.values[indices, :168]
elif self.dataset_name in ["mnist", "cifar10"]:
return self.df[indices]
else:
raise Exception("Unsupported dataset!")