-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnet-attention-component.cc
671 lines (596 loc) · 27.4 KB
/
nnet-attention-component.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
// nnet3/nnet-attention-component.cc
// Copyright 2017 Johns Hopkins University (author: Daniel Povey)
// 2017 Hossein Hadian
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <iterator>
#include <sstream>
#include <iomanip>
#include "nnet3/nnet-attention-component.h"
#include "nnet3/nnet-parse.h"
#include "nnet3/nnet-compile-utils.h"
namespace kaldi {
namespace nnet3 {
std::string RestrictedAttentionComponent::Info() const {
std::stringstream stream;
stream << Type() << ", input-dim=" << InputDim()
<< ", output-dim=" << OutputDim()
<< ", num-heads=" << num_heads_
<< ", time-stride=" << time_stride_
<< ", key-dim=" << key_dim_
<< ", value-dim=" << value_dim_
<< ", num-left-inputs=" << num_left_inputs_
<< ", num-right-inputs=" << num_right_inputs_
<< ", context-dim=" << context_dim_
<< ", num-left-inputs-required=" << num_left_inputs_required_
<< ", num-right-inputs-required=" << num_right_inputs_required_
<< ", output-context=" << (output_context_ ? "true" : "false")
<< ", key-scale=" << key_scale_;
if (stats_count_ != 0.0) {
stream << ", entropy=";
for (int32 i = 0; i < entropy_stats_.Dim(); i++)
stream << (entropy_stats_(i) / stats_count_) << ',';
for (int32 i = 0; i < num_heads_ && i < 5; i++) {
stream << " posterior-stats[" << i <<"]=";
for (int32 j = 0; j < posterior_stats_.NumCols(); j++)
stream << (posterior_stats_(i,j) / stats_count_) << ',';
}
stream << " stats-count=" << stats_count_;
}
return stream.str();
}
RestrictedAttentionComponent::RestrictedAttentionComponent(
const RestrictedAttentionComponent &other):
num_heads_(other.num_heads_),
key_dim_(other.key_dim_),
value_dim_(other.value_dim_),
num_left_inputs_(other.num_left_inputs_),
num_right_inputs_(other.num_right_inputs_),
time_stride_(other.time_stride_),
context_dim_(other.context_dim_),
num_left_inputs_required_(other.num_left_inputs_required_),
num_right_inputs_required_(other.num_right_inputs_required_),
output_context_(other.output_context_),
key_scale_(other.key_scale_),
stats_count_(other.stats_count_),
entropy_stats_(other.entropy_stats_),
posterior_stats_(other.posterior_stats_) { }
void RestrictedAttentionComponent::InitFromConfig(ConfigLine *cfl) {
num_heads_ = 1;
key_dim_ = -1;
value_dim_ = -1;
num_left_inputs_ = -1;
num_right_inputs_ = -1;
time_stride_ = 1;
num_left_inputs_required_ = -1;
num_right_inputs_required_ = -1;
output_context_ = true;
key_scale_ = -1.0;
// mandatory arguments.
bool ok = cfl->GetValue("key-dim", &key_dim_) &&
cfl->GetValue("value-dim", &value_dim_) &&
cfl->GetValue("num-left-inputs", &num_left_inputs_) &&
cfl->GetValue("num-right-inputs", &num_right_inputs_);
if (!ok)
KALDI_ERR << "All of the values key-dim, value-dim, "
"num-left-inputs and num-right-inputs must be defined.";
// optional arguments.
cfl->GetValue("num-heads", &num_heads_);
cfl->GetValue("time-stride", &time_stride_);
cfl->GetValue("num-left-inputs-required", &num_left_inputs_required_);
cfl->GetValue("num-right-inputs-required", &num_right_inputs_required_);
cfl->GetValue("output-context", &output_context_);
cfl->GetValue("key-scale", &key_scale_);
if (key_scale_ < 0.0) key_scale_ = 1.0 / sqrt(key_dim_);
if (num_left_inputs_required_ < 0)
num_left_inputs_required_ = num_left_inputs_;
if (num_right_inputs_required_ < 0)
num_right_inputs_required_ = num_right_inputs_;
if (num_heads_ <= 0 || key_dim_ <= 0 || value_dim_ <= 0 ||
num_left_inputs_ < 0 || num_right_inputs_ < 0 ||
(num_left_inputs_ + num_right_inputs_) <= 0 ||
num_left_inputs_required_ > num_left_inputs_ ||
num_right_inputs_required_ > num_right_inputs_ ||
time_stride_ <= 0)
KALDI_ERR << "Config line contains invalid values: "
<< cfl->WholeLine();
stats_count_ = 0.0;
context_dim_ = num_left_inputs_ + 1 + num_right_inputs_;
Check();
}
void*
RestrictedAttentionComponent::Propagate(const ComponentPrecomputedIndexes *indexes_in,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const {
const PrecomputedIndexes *indexes = dynamic_cast<const PrecomputedIndexes*>(
indexes_in);
KALDI_ASSERT(indexes != NULL &&
in.NumRows() == indexes->io.num_t_in * indexes->io.num_images &&
out->NumRows() == indexes->io.num_t_out * indexes->io.num_images);
Memo *memo = new Memo();
memo->c.Resize(out->NumRows(), context_dim_ * num_heads_);
int32 query_dim = key_dim_ + context_dim_;
int32 input_dim_per_head = key_dim_ + value_dim_ + query_dim,
output_dim_per_head = value_dim_ + (output_context_ ? context_dim_ : 0);
for (int32 h = 0; h < num_heads_; h++) {
CuSubMatrix<BaseFloat> in_part(in, 0, in.NumRows(),
h * input_dim_per_head, input_dim_per_head),
c_part(memo->c, 0, out->NumRows(),
h * context_dim_, context_dim_),
out_part(*out, 0, out->NumRows(),
h * output_dim_per_head, output_dim_per_head);
PropagateOneHead(indexes->io, in_part, &c_part, &out_part);
}
return static_cast<void*>(memo);
}
void RestrictedAttentionComponent::PropagateOneHead(
const time_height_convolution::ConvolutionComputationIo &io,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *c,
CuMatrixBase<BaseFloat> *out) const {
int32 query_dim = key_dim_ + context_dim_,
full_value_dim = value_dim_ + (output_context_ ? context_dim_ : 0);
KALDI_ASSERT(in.NumRows() == io.num_images * io.num_t_in &&
out->NumRows() == io.num_images * io.num_t_out &&
out->NumCols() == full_value_dim &&
in.NumCols() == (key_dim_ + value_dim_ + query_dim) &&
io.t_step_in == io.t_step_out &&
(io.start_t_out - io.start_t_in) % io.t_step_in == 0);
// 'steps_left_context' is the number of time-steps the input has on the left
// that don't appear in the output.
int32 steps_left_context = (io.start_t_out - io.start_t_in) / io.t_step_in,
rows_left_context = steps_left_context * io.num_images;
KALDI_ASSERT(rows_left_context >= 0);
// 'queries' contains the queries. We don't use all rows of the input
// queries; only the rows that correspond to the time-indexes at the
// output, i.e. we exclude the left-context and right-context.
// 'out'; the remaining rows of 'in' that we didn't select correspond to left
// and right temporal context.
CuSubMatrix<BaseFloat> queries(in, rows_left_context, out->NumRows(),
key_dim_ + value_dim_, query_dim);
// 'keys' contains the keys; note, these are not extended with
// context information; that happens further in.
CuSubMatrix<BaseFloat> keys(in, 0, in.NumRows(), 0, key_dim_);
// 'values' contains the values which we will interpolate.
// these don't contain the context information; that will be added
// later if output_context_ == true.
CuSubMatrix<BaseFloat> values(in, 0, in.NumRows(), key_dim_, value_dim_);
attention::AttentionForward(key_scale_, keys, queries, values, c, out);
}
void RestrictedAttentionComponent::StoreStats(
const CuMatrixBase<BaseFloat> &, // in_value
const CuMatrixBase<BaseFloat> &, // out_value
void *memo_in) {
const Memo *memo = static_cast<const Memo*>(memo_in);
KALDI_ASSERT(memo != NULL);
if (entropy_stats_.Dim() != num_heads_) {
entropy_stats_.Resize(num_heads_);
posterior_stats_.Resize(num_heads_, context_dim_);
stats_count_ = 0.0;
}
const CuMatrix<BaseFloat> &c = memo->c;
if (RandInt(0, 2) == 0)
return; // only actually store the stats for one in three minibatches, to
// save time.
{ // first get the posterior stats.
CuVector<BaseFloat> c_sum(num_heads_ * context_dim_);
c_sum.AddRowSumMat(1.0, c, 0.0);
// view the vector as a matrix.
CuSubMatrix<BaseFloat> c_sum_as_mat(c_sum.Data(), num_heads_,
context_dim_, context_dim_);
CuMatrix<double> c_sum_as_mat_dbl(c_sum_as_mat);
posterior_stats_.AddMat(1.0, c_sum_as_mat_dbl);
KALDI_ASSERT(c.NumCols() == num_heads_ * context_dim_);
}
{ // now get the entropy stats.
CuMatrix<BaseFloat> log_c(c);
log_c.ApplyFloor(1.0e-20);
log_c.ApplyLog();
CuVector<BaseFloat> dot_prod(num_heads_ * context_dim_);
dot_prod.AddDiagMatMat(-1.0, c, kTrans, log_c, kNoTrans, 0.0);
// dot_prod is the sum over the matrix's rows (which correspond
// to heads, and context positions), of - c * log(c), which is
// part of the entropy. To get the actual contribution to the
// entropy, we have to sum 'dot_prod' over blocks of
// size 'context_dim_'; that gives us the entropy contribution
// per head. We'd have to divide by c.NumRows() to get the
// actual entropy, but that's reflected in stats_count_.
CuSubMatrix<BaseFloat> entropy_mat(dot_prod.Data(), num_heads_,
context_dim_, context_dim_);
CuVector<BaseFloat> entropy_vec(num_heads_);
entropy_vec.AddColSumMat(1.0, entropy_mat);
Vector<double> entropy_vec_dbl(entropy_vec);
entropy_stats_.AddVec(1.0, entropy_vec_dbl);
}
stats_count_ += c.NumRows();
}
void RestrictedAttentionComponent::ZeroStats() {
entropy_stats_.SetZero();
posterior_stats_.SetZero();
stats_count_ = 0.0;
}
void RestrictedAttentionComponent::Scale(BaseFloat scale) {
entropy_stats_.Scale(scale);
posterior_stats_.Scale(scale);
stats_count_ *= scale;
}
void RestrictedAttentionComponent::Add(BaseFloat alpha, const Component &other_in) {
const RestrictedAttentionComponent *other =
dynamic_cast<const RestrictedAttentionComponent*>(&other_in);
KALDI_ASSERT(other != NULL);
if (entropy_stats_.Dim() == 0 && other->entropy_stats_.Dim() != 0)
entropy_stats_.Resize(other->entropy_stats_.Dim());
if (posterior_stats_.NumRows() == 0 && other->posterior_stats_.NumRows() != 0)
posterior_stats_.Resize(other->posterior_stats_.NumRows(), other->posterior_stats_.NumCols());
if (other->entropy_stats_.Dim() != 0)
entropy_stats_.AddVec(alpha, other->entropy_stats_);
if (other->posterior_stats_.NumRows() != 0)
posterior_stats_.AddMat(alpha, other->posterior_stats_);
stats_count_ += alpha * other->stats_count_;
}
void RestrictedAttentionComponent::Check() const {
KALDI_ASSERT(num_heads_ > 0 && key_dim_ > 0 && value_dim_ > 0 &&
num_left_inputs_ >= 0 && num_right_inputs_ >= 0 &&
(num_left_inputs_ + num_right_inputs_) > 0 &&
time_stride_ > 0 &&
context_dim_ == (num_left_inputs_ + 1 + num_right_inputs_) &&
num_left_inputs_required_ >= 0 &&
num_left_inputs_required_ <= num_left_inputs_ &&
num_right_inputs_required_ >= 0 &&
num_right_inputs_required_ <= num_right_inputs_ &&
key_scale_ > 0.0 && key_scale_ <= 1.0 &&
stats_count_ >= 0.0);
}
void RestrictedAttentionComponent::Backprop(
const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes_in,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &, // out_value
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo_in,
Component *to_update_in,
CuMatrixBase<BaseFloat> *in_deriv) const {
const PrecomputedIndexes *indexes =
dynamic_cast<const PrecomputedIndexes*>(indexes_in);
KALDI_ASSERT(indexes != NULL);
Memo *memo = static_cast<Memo*>(memo_in);
KALDI_ASSERT(memo != NULL);
const time_height_convolution::ConvolutionComputationIo &io = indexes->io;
KALDI_ASSERT(indexes != NULL &&
in_value.NumRows() == io.num_t_in * io.num_images &&
out_deriv.NumRows() == io.num_t_out * io.num_images &&
in_deriv != NULL && SameDim(in_value, *in_deriv));
const CuMatrix<BaseFloat> &c = memo->c;
int32 query_dim = key_dim_ + context_dim_,
input_dim_per_head = key_dim_ + value_dim_ + query_dim,
output_dim_per_head = value_dim_ + (output_context_ ? context_dim_ : 0);
for (int32 h = 0; h < num_heads_; h++) {
CuSubMatrix<BaseFloat>
in_value_part(in_value, 0, in_value.NumRows(),
h * input_dim_per_head, input_dim_per_head),
c_part(c, 0, out_deriv.NumRows(),
h * context_dim_, context_dim_),
out_deriv_part(out_deriv, 0, out_deriv.NumRows(),
h * output_dim_per_head, output_dim_per_head),
in_deriv_part(*in_deriv, 0, in_value.NumRows(),
h * input_dim_per_head, input_dim_per_head);
BackpropOneHead(io, in_value_part, c_part, out_deriv_part,
&in_deriv_part);
}
}
void RestrictedAttentionComponent::BackpropOneHead(
const time_height_convolution::ConvolutionComputationIo &io,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &c,
const CuMatrixBase<BaseFloat> &out_deriv,
CuMatrixBase<BaseFloat> *in_deriv) const {
// the easiest way to understand this is to compare it with PropagateOneHead().
int32 query_dim = key_dim_ + context_dim_,
full_value_dim = value_dim_ + (output_context_ ? context_dim_ : 0);
KALDI_ASSERT(in_value.NumRows() == io.num_images * io.num_t_in &&
out_deriv.NumRows() == io.num_images * io.num_t_out &&
out_deriv.NumCols() == full_value_dim &&
in_value.NumCols() == (key_dim_ + value_dim_ + query_dim) &&
io.t_step_in == io.t_step_out &&
(io.start_t_out - io.start_t_in) % io.t_step_in == 0 &&
SameDim(in_value, *in_deriv) &&
c.NumRows() == out_deriv.NumRows() &&
c.NumCols() == context_dim_);
// 'steps_left_context' is the number of time-steps the input has on the left
// that don't appear in the output.
int32 steps_left_context = (io.start_t_out - io.start_t_in) / io.t_step_in,
rows_left_context = steps_left_context * io.num_images;
KALDI_ASSERT(rows_left_context >= 0);
CuSubMatrix<BaseFloat> queries(in_value, rows_left_context, out_deriv.NumRows(),
key_dim_ + value_dim_, query_dim),
queries_deriv(*in_deriv, rows_left_context, out_deriv.NumRows(),
key_dim_ + value_dim_, query_dim),
keys(in_value, 0, in_value.NumRows(), 0, key_dim_),
keys_deriv(*in_deriv, 0, in_value.NumRows(), 0, key_dim_),
values(in_value, 0, in_value.NumRows(), key_dim_, value_dim_),
values_deriv(*in_deriv, 0, in_value.NumRows(), key_dim_, value_dim_);
attention::AttentionBackward(key_scale_, keys, queries, values, c, out_deriv,
&keys_deriv, &queries_deriv, &values_deriv);
}
void RestrictedAttentionComponent::ReorderIndexes(
std::vector<Index> *input_indexes,
std::vector<Index> *output_indexes) const {
using namespace time_height_convolution;
ConvolutionComputationIo io;
GetComputationStructure(*input_indexes, *output_indexes, &io);
std::vector<Index> new_input_indexes, new_output_indexes;
GetIndexes(*input_indexes, *output_indexes, io,
&new_input_indexes, &new_output_indexes);
input_indexes->swap(new_input_indexes);
output_indexes->swap(new_output_indexes);
}
void RestrictedAttentionComponent::GetComputationStructure(
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
time_height_convolution::ConvolutionComputationIo *io) const {
GetComputationIo(input_indexes, output_indexes, io);
// if there was only one output and/or input index (unlikely),
// just let the grid periodicity be t_stride_.
if (io->t_step_out == 0) io->t_step_out = time_stride_;
if (io->t_step_in == 0) io->t_step_in = time_stride_;
// We need the grid size on the input and output to be the same, and to divide
// t_stride_. If someone is requesting the output more frequently than
// t_stride_, then after this change we may end up computing more outputs than
// we need, but this is not a configuration that I think is very likely. We
// let the grid step be the gcd of the input and output steps, and of
// t_stride_.
// The next few statements may have the effect of making the grid finer at the
// input and output, while having the same start and end point.
int32 t_step = Gcd(Gcd(io->t_step_out, io->t_step_in), time_stride_);
int32 multiple_out = io->t_step_out / t_step,
multiple_in = io->t_step_in / t_step;
io->t_step_in = t_step;
io->t_step_out = t_step;
io->num_t_out = 1 + multiple_out * (io->num_t_out - 1);
io->num_t_in = 1 + multiple_in * (io->num_t_in - 1);
// Now ensure that the extent of the input has at least
// the requested left-context and right context; if
// this increases the amount of input, we'll do zero-padding.
int32 first_requested_input =
io->start_t_out - (time_stride_ * num_left_inputs_),
first_required_input =
io->start_t_out - (time_stride_ * num_left_inputs_required_),
last_t_out = io->start_t_out + (io->num_t_out - 1) * t_step,
last_t_in = io->start_t_in + (io->num_t_in - 1) * t_step,
last_requested_input = last_t_out + (time_stride_ * num_right_inputs_),
last_required_input =
last_t_out + (time_stride_ * num_right_inputs_required_);
// check that we don't have *more* than the requested context,
// but that we have at least the required context.
KALDI_ASSERT(io->start_t_in >= first_requested_input &&
last_t_in <= last_requested_input &&
io->start_t_in <= first_required_input &&
last_t_in >= last_required_input);
// For the inputs that were requested, but not required,
// we pad with zeros. We pad the 'io' object, adding these
// extra inputs structurally; in runtime they'll be set to zero.
io->start_t_in = first_requested_input;
io->num_t_in = 1 + (last_requested_input - first_requested_input) / t_step;
}
void RestrictedAttentionComponent::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<RestrictedAttentionComponent>");
WriteToken(os, binary, "<NumHeads>");
WriteBasicType(os, binary, num_heads_);
WriteToken(os, binary, "<KeyDim>");
WriteBasicType(os, binary, key_dim_);
WriteToken(os, binary, "<ValueDim>");
WriteBasicType(os, binary, value_dim_);
WriteToken(os, binary, "<NumLeftInputs>");
WriteBasicType(os, binary, num_left_inputs_);
WriteToken(os, binary, "<NumRightInputs>");
WriteBasicType(os, binary, num_right_inputs_);
WriteToken(os, binary, "<TimeStride>");
WriteBasicType(os, binary, time_stride_);
WriteToken(os, binary, "<NumLeftInputsRequired>");
WriteBasicType(os, binary, num_left_inputs_required_);
WriteToken(os, binary, "<NumRightInputsRequired>");
WriteBasicType(os, binary, num_right_inputs_required_);
WriteToken(os, binary, "<OutputContext>");
WriteBasicType(os, binary, output_context_);
WriteToken(os, binary, "<KeyScale>");
WriteBasicType(os, binary, key_scale_);
WriteToken(os, binary, "<StatsCount>");
WriteBasicType(os, binary, stats_count_);
WriteToken(os, binary, "<EntropyStats>");
entropy_stats_.Write(os, binary);
WriteToken(os, binary, "<PosteriorStats>");
posterior_stats_.Write(os, binary);
WriteToken(os, binary, "</RestrictedAttentionComponent>");
}
void RestrictedAttentionComponent::Read(std::istream &is, bool binary) {
ExpectOneOrTwoTokens(is, binary, "<RestrictedAttentionComponent>",
"<NumHeads>");
ReadBasicType(is, binary, &num_heads_);
ExpectToken(is, binary, "<KeyDim>");
ReadBasicType(is, binary, &key_dim_);
ExpectToken(is, binary, "<ValueDim>");
ReadBasicType(is, binary, &value_dim_);
ExpectToken(is, binary, "<NumLeftInputs>");
ReadBasicType(is, binary, &num_left_inputs_);
ExpectToken(is, binary, "<NumRightInputs>");
ReadBasicType(is, binary, &num_right_inputs_);
ExpectToken(is, binary, "<TimeStride>");
ReadBasicType(is, binary, &time_stride_);
ExpectToken(is, binary, "<NumLeftInputsRequired>");
ReadBasicType(is, binary, &num_left_inputs_required_);
ExpectToken(is, binary, "<NumRightInputsRequired>");
ReadBasicType(is, binary, &num_right_inputs_required_);
ExpectToken(is, binary, "<OutputContext>");
ReadBasicType(is, binary, &output_context_);
ExpectToken(is, binary, "<KeyScale>");
ReadBasicType(is, binary, &key_scale_);
ExpectToken(is, binary, "<StatsCount>");
ReadBasicType(is, binary, &stats_count_);
ExpectToken(is, binary, "<EntropyStats>");
entropy_stats_.Read(is, binary);
ExpectToken(is, binary, "<PosteriorStats>");
posterior_stats_.Read(is, binary);
ExpectToken(is, binary, "</RestrictedAttentionComponent>");
context_dim_ = num_left_inputs_ + 1 + num_right_inputs_;
}
void RestrictedAttentionComponent::GetInputIndexes(
const MiscComputationInfo &misc_info,
const Index &output_index,
std::vector<Index> *desired_indexes) const {
KALDI_ASSERT(output_index.t != kNoTime);
int32 first_time = output_index.t - (time_stride_ * num_left_inputs_),
last_time = output_index.t + (time_stride_ * num_right_inputs_);
desired_indexes->clear();
desired_indexes->resize(context_dim_);
int32 n = output_index.n, x = output_index.x,
i = 0;
for (int32 t = first_time; t <= last_time; t += time_stride_, i++) {
(*desired_indexes)[i].n = n;
(*desired_indexes)[i].t = t;
(*desired_indexes)[i].x = x;
}
KALDI_ASSERT(i == context_dim_);
}
bool RestrictedAttentionComponent::IsComputable(
const MiscComputationInfo &misc_info,
const Index &output_index,
const IndexSet &input_index_set,
std::vector<Index> *used_inputs) const {
KALDI_ASSERT(output_index.t != kNoTime);
Index index(output_index);
if (used_inputs != NULL) {
int32 first_time = output_index.t - (time_stride_ * num_left_inputs_),
last_time = output_index.t + (time_stride_ * num_right_inputs_);
used_inputs->clear();
used_inputs->reserve(context_dim_);
for (int32 t = first_time; t <= last_time; t += time_stride_) {
index.t = t;
if (input_index_set(index)) {
// This input index is available.
used_inputs->push_back(index);
} else {
// This input index is not available.
int32 offset = (t - output_index.t) / time_stride_;
if (offset >= num_left_inputs_required_ &&
offset <= num_right_inputs_required_) {
used_inputs->clear();
return false;
}
}
}
// All required time-offsets of the output were computable. -> return true.
return true;
} else {
int32 t = output_index.t,
first_time_required = t - (time_stride_ * num_left_inputs_required_),
last_time_required = t + (time_stride_ * num_right_inputs_required_);
for (int32 t = first_time_required;
t <= last_time_required;
t += time_stride_) {
index.t = t;
if (!input_index_set(index))
return false;
}
return true;
}
}
// static
void RestrictedAttentionComponent::CreateIndexesVector(
const std::vector<std::pair<int32, int32> > &n_x_pairs,
int32 t_start, int32 t_step, int32 num_t_values,
const std::unordered_set<Index, IndexHasher> &index_set,
std::vector<Index> *output_indexes) {
output_indexes->resize(static_cast<size_t>(num_t_values) * n_x_pairs.size());
std::vector<Index>::iterator out_iter = output_indexes->begin();
for (int32 t = t_start; t < t_start + (t_step * num_t_values); t += t_step) {
std::vector<std::pair<int32, int32> >::const_iterator
iter = n_x_pairs.begin(), end = n_x_pairs.end();
for (; iter != end; ++iter) {
out_iter->n = iter->first;
out_iter->t = t;
out_iter->x = iter->second;
if (index_set.count(*out_iter) == 0)
out_iter->t = kNoTime;
++out_iter;
}
}
KALDI_ASSERT(out_iter == output_indexes->end());
}
void RestrictedAttentionComponent::GetIndexes(
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
time_height_convolution::ConvolutionComputationIo &io,
std::vector<Index> *new_input_indexes,
std::vector<Index> *new_output_indexes) const {
std::unordered_set<Index, IndexHasher> input_set, output_set;
for (std::vector<Index>::const_iterator iter = input_indexes.begin();
iter != input_indexes.end(); ++iter)
input_set.insert(*iter);
for (std::vector<Index>::const_iterator iter = output_indexes.begin();
iter != output_indexes.end(); ++iter)
output_set.insert(*iter);
std::vector<std::pair<int32, int32> > n_x_pairs;
GetNxList(input_indexes, &n_x_pairs); // the n,x pairs at the output will be
// identical.
KALDI_ASSERT(n_x_pairs.size() == io.num_images);
CreateIndexesVector(n_x_pairs, io.start_t_in, io.t_step_in, io.num_t_in,
input_set, new_input_indexes);
CreateIndexesVector(n_x_pairs, io.start_t_out, io.t_step_out, io.num_t_out,
output_set, new_output_indexes);
}
ComponentPrecomputedIndexes* RestrictedAttentionComponent::PrecomputeIndexes(
const MiscComputationInfo &, // misc_info
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
bool) // need_backprop
const {
PrecomputedIndexes *ans = new PrecomputedIndexes();
GetComputationStructure(input_indexes, output_indexes, &(ans->io));
if (GetVerboseLevel() >= 2) {
// what goes next is just a check.
std::vector<Index> new_input_indexes, new_output_indexes;
GetIndexes(input_indexes, output_indexes, ans->io,
&new_input_indexes, &new_output_indexes);
// input_indexes and output_indexes should be the ones that were
// output by ReorderIndexes(), so they should already
// have gone through the GetComputationStructure()->GetIndexes()
// procedure. Applying the same procedure twice is supposed to
// give an unchanged results.
KALDI_ASSERT(input_indexes == new_input_indexes &&
output_indexes == new_output_indexes);
}
return ans;
}
RestrictedAttentionComponent::PrecomputedIndexes*
RestrictedAttentionComponent::PrecomputedIndexes::Copy() const {
return new PrecomputedIndexes(*this);
}
void RestrictedAttentionComponent::PrecomputedIndexes::Write(
std::ostream &os, bool binary) const {
WriteToken(os, binary, "<RestrictedAttentionComponentPrecomputedIndexes>");
WriteToken(os, binary, "<Io>");
io.Write(os, binary);
WriteToken(os, binary, "</RestrictedAttentionComponentPrecomputedIndexes>");
}
void RestrictedAttentionComponent::PrecomputedIndexes::Read(
std::istream &is, bool binary) {
ExpectOneOrTwoTokens(is, binary,
"<RestrictedAttentionComponentPrecomputedIndexes>",
"<Io>");
io.Read(is, binary);
ExpectToken(is, binary, "</RestrictedAttentionComponentPrecomputedIndexes>");
}
} // namespace nnet3
} // namespace kaldi