-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnet-diagnostics.cc
324 lines (295 loc) · 11.5 KB
/
nnet-diagnostics.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// nnet3/nnet-diagnostics.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet3/nnet-diagnostics.h"
#include "nnet3/nnet-utils.h"
namespace kaldi {
namespace nnet3 {
NnetComputeProb::NnetComputeProb(const NnetComputeProbOptions &config,
const Nnet &nnet):
config_(config),
nnet_(nnet),
deriv_nnet_owned_(true),
deriv_nnet_(NULL),
compiler_(nnet, config_.optimize_config, config_.compiler_config),
num_minibatches_processed_(0) {
if (config_.compute_deriv) {
deriv_nnet_ = new Nnet(nnet_);
ScaleNnet(0.0, deriv_nnet_);
SetNnetAsGradient(deriv_nnet_); // force simple update
} else if (config_.store_component_stats) {
KALDI_ERR << "If you set store_component_stats == true and "
<< "compute_deriv == false, use the other constructor.";
}
}
NnetComputeProb::NnetComputeProb(const NnetComputeProbOptions &config,
Nnet *nnet):
config_(config),
nnet_(*nnet),
deriv_nnet_owned_(false),
deriv_nnet_(nnet),
compiler_(*nnet, config_.optimize_config, config_.compiler_config),
num_minibatches_processed_(0) {
KALDI_ASSERT(config.store_component_stats && !config.compute_deriv);
}
const Nnet &NnetComputeProb::GetDeriv() const {
if (!config_.compute_deriv)
KALDI_ERR << "GetDeriv() called when no derivatives were requested.";
return *deriv_nnet_;
}
NnetComputeProb::~NnetComputeProb() {
if (deriv_nnet_owned_)
delete deriv_nnet_; // delete does nothing if pointer is NULL.
}
void NnetComputeProb::Reset() {
num_minibatches_processed_ = 0;
objf_info_.clear();
accuracy_info_.clear();
if (deriv_nnet_) {
ScaleNnet(0.0, deriv_nnet_);
SetNnetAsGradient(deriv_nnet_);
}
}
void NnetComputeProb::Compute(const NnetExample &eg) {
bool need_model_derivative = config_.compute_deriv,
store_component_stats = config_.store_component_stats;
ComputationRequest request;
GetComputationRequest(nnet_, eg, need_model_derivative,
store_component_stats,
&request);
std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request);
NnetComputer computer(config_.compute_config, *computation,
nnet_, deriv_nnet_);
// give the inputs to the computer object.
computer.AcceptInputs(nnet_, eg.io);
computer.Run();
this->ProcessOutputs(eg, &computer);
if (config_.compute_deriv)
computer.Run();
}
void NnetComputeProb::ProcessOutputs(const NnetExample &eg,
NnetComputer *computer) {
std::vector<NnetIo>::const_iterator iter = eg.io.begin(),
end = eg.io.end();
for (; iter != end; ++iter) {
const NnetIo &io = *iter;
int32 node_index = nnet_.GetNodeIndex(io.name);
if (node_index < 0)
KALDI_ERR << "Network has no output named " << io.name;
ObjectiveType obj_type = nnet_.GetNode(node_index).u.objective_type;
if (nnet_.IsOutputNode(node_index)) {
const CuMatrixBase<BaseFloat> &output = computer->GetOutput(io.name);
if (output.NumCols() != io.features.NumCols()) {
KALDI_ERR << "Nnet versus example output dimension (num-classes) "
<< "mismatch for '" << io.name << "': " << output.NumCols()
<< " (nnet) vs. " << io.features.NumCols() << " (egs)\n";
}
{
BaseFloat tot_weight, tot_objf;
bool supply_deriv = config_.compute_deriv;
ComputeObjectiveFunction(io.features, obj_type, io.name,
supply_deriv, computer,
&tot_weight, &tot_objf);
SimpleObjectiveInfo &totals = objf_info_[io.name];
totals.tot_weight += tot_weight;
totals.tot_objective += tot_objf;
}
// May not be meaningful in non-classification tasks
if (config_.compute_accuracy) {
BaseFloat tot_weight, tot_accuracy;
PerDimObjectiveInfo &acc_totals = accuracy_info_[io.name];
if (config_.compute_per_dim_accuracy &&
acc_totals.tot_objective_vec.Dim() == 0) {
acc_totals.tot_objective_vec.Resize(output.NumCols());
acc_totals.tot_weight_vec.Resize(output.NumCols());
}
ComputeAccuracy(io.features, output,
&tot_weight, &tot_accuracy,
config_.compute_per_dim_accuracy ?
&acc_totals.tot_weight_vec : NULL,
config_.compute_per_dim_accuracy ?
&acc_totals.tot_objective_vec : NULL);
acc_totals.tot_weight += tot_weight;
acc_totals.tot_objective += tot_accuracy;
}
}
}
num_minibatches_processed_++;
}
bool NnetComputeProb::PrintTotalStats() const {
bool ans = false;
{ // First print regular objectives
unordered_map<std::string, SimpleObjectiveInfo,
StringHasher>::const_iterator iter, end;
iter = objf_info_.begin();
end = objf_info_.end();
for (; iter != end; ++iter) {
const std::string &name = iter->first;
int32 node_index = nnet_.GetNodeIndex(name);
KALDI_ASSERT(node_index >= 0);
ObjectiveType obj_type = nnet_.GetNode(node_index).u.objective_type;
const SimpleObjectiveInfo &info = iter->second;
KALDI_LOG << "Overall "
<< (obj_type == kLinear ? "log-likelihood" : "objective")
<< " for '" << name << "' is "
<< (info.tot_objective / info.tot_weight) << " per frame"
<< ", over " << info.tot_weight << " frames.";
if (info.tot_weight > 0)
ans = true;
}
}
{
unordered_map<std::string, PerDimObjectiveInfo,
StringHasher>::const_iterator iter, end;
// now print accuracies.
iter = accuracy_info_.begin();
end = accuracy_info_.end();
for (; iter != end; ++iter) {
const std::string &name = iter->first;
const PerDimObjectiveInfo &info = iter->second;
KALDI_LOG << "Overall accuracy for '" << name << "' is "
<< (info.tot_objective / info.tot_weight) << " per frame"
<< ", over " << info.tot_weight << " frames.";
if (info.tot_weight_vec.Dim() > 0) {
Vector<BaseFloat> accuracy_vec(info.tot_weight_vec.Dim());
for (size_t j = 0; j < info.tot_weight_vec.Dim(); j++) {
if (info.tot_weight_vec(j) != 0) {
accuracy_vec(j) = info.tot_objective_vec(j)
/ info.tot_weight_vec(j);
} else {
accuracy_vec(j) = -1.0;
}
}
KALDI_LOG << "Overall per-dim accuracy vector for '" << name
<< "' is " << accuracy_vec << " per frame"
<< ", over " << info.tot_weight << " frames.";
}
// don't bother changing ans; the loop over the regular objective should
// already have set it to true if we got any data.
}
}
return ans;
}
void ComputeAccuracy(const GeneralMatrix &supervision,
const CuMatrixBase<BaseFloat> &nnet_output,
BaseFloat *tot_weight_out,
BaseFloat *tot_accuracy_out,
VectorBase<BaseFloat> *tot_weight_vec,
VectorBase<BaseFloat> *tot_accuracy_vec) {
int32 num_rows = nnet_output.NumRows(),
num_cols = nnet_output.NumCols();
KALDI_ASSERT(supervision.NumRows() == num_rows &&
supervision.NumCols() == num_cols);
if (tot_accuracy_vec || tot_weight_vec)
KALDI_ASSERT(tot_accuracy_vec && tot_weight_vec &&
tot_accuracy_vec->Dim() == num_cols &&
tot_weight_vec->Dim() == num_cols);
if (tot_accuracy_vec) tot_accuracy_vec->Set(0.0);
if (tot_weight_vec) tot_weight_vec->Set(0.0);
CuArray<int32> best_index(num_rows);
nnet_output.FindRowMaxId(&best_index);
std::vector<int32> best_index_cpu;
// wasteful copy, but doesn't dominate.
best_index.CopyToVec(&best_index_cpu);
double tot_weight = 0.0,
tot_accuracy = 0.0;
// note: we expect that in most cases where this code is called,
// supervision.Type() will be kSparseMatrix.
switch (supervision.Type()) {
case kCompressedMatrix: {
Matrix<BaseFloat> mat;
supervision.GetMatrix(&mat);
for (int32 r = 0; r < num_rows; r++) {
SubVector<BaseFloat> vec(mat, r);
BaseFloat row_sum = vec.Sum();
int32 best_index;
vec.Max(&best_index); // discard max value.
tot_weight += row_sum;
if (tot_weight_vec)
(*tot_weight_vec)(best_index) += row_sum;
if (best_index == best_index_cpu[r]) {
tot_accuracy += row_sum;
if (tot_accuracy_vec)
(*tot_accuracy_vec)(best_index) += row_sum;
}
}
break;
}
case kFullMatrix: {
const Matrix<BaseFloat> &mat = supervision.GetFullMatrix();
for (int32 r = 0; r < num_rows; r++) {
SubVector<BaseFloat> vec(mat, r);
BaseFloat row_sum = vec.Sum();
int32 best_index;
vec.Max(&best_index); // discard max value.
tot_weight += row_sum;
if (tot_weight_vec)
(*tot_weight_vec)(best_index) += row_sum;
if (best_index == best_index_cpu[r]) {
tot_accuracy += row_sum;
if (tot_accuracy_vec)
(*tot_accuracy_vec)(best_index) += row_sum;
}
}
break;
}
case kSparseMatrix: {
const SparseMatrix<BaseFloat> &smat = supervision.GetSparseMatrix();
for (int32 r = 0; r < num_rows; r++) {
const SparseVector<BaseFloat> &row = smat.Row(r);
BaseFloat row_sum = row.Sum();
int32 best_index;
row.Max(&best_index);
KALDI_ASSERT(best_index < num_cols);
tot_weight += row_sum;
if (tot_weight_vec)
(*tot_weight_vec)(best_index) += row_sum;
if (best_index == best_index_cpu[r]) {
tot_accuracy += row_sum;
if (tot_accuracy_vec)
(*tot_accuracy_vec)(best_index) += row_sum;
}
}
break;
}
default: KALDI_ERR << "Bad general-matrix type.";
}
*tot_weight_out = tot_weight;
*tot_accuracy_out = tot_accuracy;
}
const SimpleObjectiveInfo* NnetComputeProb::GetObjective(
const std::string &output_name) const {
unordered_map<std::string, SimpleObjectiveInfo, StringHasher>::const_iterator
iter = objf_info_.find(output_name);
if (iter != objf_info_.end())
return &(iter->second);
else
return NULL;
}
double NnetComputeProb::GetTotalObjective(double *total_weight) const {
double tot_objectives = 0.0;
double tot_weight = 0.0;
unordered_map<std::string, SimpleObjectiveInfo, StringHasher>::const_iterator
iter = objf_info_.begin(), end = objf_info_.end();
for (; iter != end; ++iter) {
tot_objectives += iter->second.tot_objective;
tot_weight += iter->second.tot_weight;
}
if (total_weight) *total_weight = tot_weight;
return tot_objectives;
}
} // namespace nnet3
} // namespace kaldi