-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnet-discriminative-example.h
274 lines (219 loc) · 11.6 KB
/
nnet-discriminative-example.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// nnet3/nnet-discriminative-example.h
// Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey)
// 2014-2015 Vimal Manohar
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET3_NNET_DISCRIMINATIVE_EXAMPLE_H_
#define KALDI_NNET3_NNET_DISCRIMINATIVE_EXAMPLE_H_
#include "nnet3/nnet-nnet.h"
#include "nnet3/nnet-computation.h"
#include "util/table-types.h"
#include "nnet3/discriminative-supervision.h"
#include "nnet3/nnet-example.h"
#include "nnet3/nnet-example-utils.h"
#include "hmm/posterior.h"
#include "hmm/transition-model.h"
namespace kaldi {
namespace nnet3 {
// Glossary: mmi = Maximum Mutual Information,
// mpfe = Minimum Phone Frame Error
// smbr = State-level Minimum Bayes Risk
// This file relates to the creation of examples for discriminative training
struct NnetDiscriminativeSupervision {
// the name of the output in the neural net; in simple setups it
// will just be "output".
std::string name;
// The indexes that the output corresponds to. The size of this vector will
// be equal to supervision.num_sequences * supervision.frames_per_sequence.
// Be careful about the order of these indexes-- it is a little confusing.
// The indexes in the 'index' vector are ordered as: (frame 0 of each sequence);
// (frame 1 of each sequence); and so on. But in the 'supervision' object,
// the lattice contains (sequence 0; sequence 1; ...). So reordering is needed.
// This is done to make the code similar that for the 'chain' model.
std::vector<Index> indexes;
// The supervision object, containing the numerator and denominator
// lattices.
discriminative::DiscriminativeSupervision supervision;
// This is a vector of per-frame weights, required to be between 0 and 1,
// that is applied to the derivative during training (but not during model
// combination, where the derivatives need to agree with the computed objf
// values for the optimization code to work). The reason for this is to more
// exactly handle edge effects and to ensure that no frames are
// 'double-counted'. The order of this vector corresponds to the order of
// the 'indexes' (i.e. all the first frames, then all the second frames,
// etc.)
// If this vector is empty it means we're not applying per-frame weights,
// so it's equivalent to a vector of all ones. This vector is written
// to disk compactly as unsigned char.
Vector<BaseFloat> deriv_weights;
// Use default assignment operator
NnetDiscriminativeSupervision() { }
// Initialize the object from an object of type discriminative::Supervision,
// and some extra information.
// Note: you probably want to set 'name' to "output".
// 'first_frame' will often be zero but you can choose (just make it
// consistent with how you numbered your inputs), and 'frame_skip' would be 1
// in a vanilla setup, but 3 in the case of 'chain' models
NnetDiscriminativeSupervision(const std::string &name,
const discriminative::DiscriminativeSupervision &supervision,
const VectorBase<BaseFloat> &deriv_weights,
int32 first_frame,
int32 frame_skip);
NnetDiscriminativeSupervision(const NnetDiscriminativeSupervision &other);
void Write(std::ostream &os, bool binary) const;
void Read(std::istream &is, bool binary);
void Swap(NnetDiscriminativeSupervision *other);
void CheckDim() const;
bool operator == (const NnetDiscriminativeSupervision &other) const;
};
/// NnetDiscriminativeExample is like NnetExample, but specialized for
/// sequence training.
struct NnetDiscriminativeExample {
/// 'inputs' contains the input to the network-- normally just it has just one
/// element called "input", but there may be others (e.g. one called
/// "ivector")... this depends on the setup.
std::vector<NnetIo> inputs;
/// 'outputs' contains the sequence output supervision. There will normally
/// be just one member with name == "output".
std::vector<NnetDiscriminativeSupervision> outputs;
void Write(std::ostream &os, bool binary) const;
void Read(std::istream &is, bool binary);
void Swap(NnetDiscriminativeExample *other);
// Compresses the input features (if not compressed)
void Compress();
NnetDiscriminativeExample() { }
NnetDiscriminativeExample(const NnetDiscriminativeExample &other);
bool operator == (const NnetDiscriminativeExample &other) const {
return inputs == other.inputs && outputs == other.outputs;
}
};
/// This hashing object hashes just the structural aspects of the NnetExample
/// without looking at the value of the features. It will be used in combining
/// egs into batches of all similar structure.
struct NnetDiscriminativeExampleStructureHasher {
size_t operator () (const NnetDiscriminativeExample &eg) const noexcept ;
// We also provide a version of this that works from pointers.
size_t operator () (const NnetDiscriminativeExample *eg) const noexcept {
return (*this)(*eg);
}
};
/// This comparator object compares just the structural aspects of the
/// NnetDiscriminativeExample without looking at the value of the features.
struct NnetDiscriminativeExampleStructureCompare {
bool operator () (const NnetDiscriminativeExample &a,
const NnetDiscriminativeExample &b) const;
// We also provide a version of this that works from pointers.
bool operator () (const NnetDiscriminativeExample *a,
const NnetDiscriminativeExample *b) const {
return (*this)(*a, *b);
}
};
/**
Appends the given vector of examples (which must be non-empty) into
a single output example.
Intended to be used when forming minibatches for neural net training. If
'compress' it compresses the output features (recommended to save disk
space).
Note: the input is left as it was at the start, but it is temporarily
changed inside the function; this is a trick to allow us to use the
MergeExamples() routine while avoiding having to rewrite code.
*/
void MergeDiscriminativeExamples(
std::vector<NnetDiscriminativeExample> *input,
bool compress,
NnetDiscriminativeExample *output);
// called from MergeDiscriminativeExamples, this function merges the Supervision
// objects into one. Requires (and checks) that they all have the same name.
void MergeSupervision(
const std::vector<const NnetDiscriminativeSupervision*> &inputs,
NnetDiscriminativeSupervision *output);
/** Shifts the time-index t of everything in the input of "eg" by adding
"t_offset" to all "t" values-- but excluding those with names listed in
"exclude_names", e.g. "ivector". This might be useful if you are doing
subsampling of frames at the output, because shifted examples won't be quite
equivalent to their non-shifted counterparts. "exclude_names" is a vector
of names of nnet inputs that we avoid shifting the "t" values of-- normally
it will contain just the single string "ivector" because we always leave t=0
for any ivector.
Note: input features will be shifted by 'frame_shift', and indexes in the
supervision in (eg->output) will be shifted by 'frame_shift' rounded to the
closest multiple of the frame subsampling factor (e.g. 3). The frame
subsampling factor is worked out from the time spacing between the indexes
in the output. */
void ShiftDiscriminativeExampleTimes(int32 frame_shift,
const std::vector<std::string> &exclude_names,
NnetDiscriminativeExample *eg);
/** This function takes a NnetDiscriminativeExample and produces a
ComputationRequest.
Assumes you don't want the derivatives w.r.t. the inputs; if you do, you
can create the ComputationRequest manually. Assumes that if
need_model_derivative is true, you will be supplying derivatives w.r.t. all
outputs.
*/
void GetDiscriminativeComputationRequest(const Nnet &nnet,
const NnetDiscriminativeExample &eg,
bool need_model_derivative,
bool store_component_stats,
bool use_xent_regularization,
bool use_xent_derivative,
ComputationRequest *computation_request);
typedef TableWriter<KaldiObjectHolder<NnetDiscriminativeExample > > NnetDiscriminativeExampleWriter;
typedef SequentialTableReader<KaldiObjectHolder<NnetDiscriminativeExample > > SequentialNnetDiscriminativeExampleReader;
typedef RandomAccessTableReader<KaldiObjectHolder<NnetDiscriminativeExample > > RandomAccessNnetDiscriminativeExampleReader;
/// This function returns the 'size' of a discriminative example as defined for
/// purposes of merging egs, which is defined as the largest number of Indexes
/// in any of the inputs or outputs of the example.
int32 GetDiscriminativeNnetExampleSize(const NnetDiscriminativeExample &a);
/// This class is responsible for arranging examples in groups that have the
/// same strucure (i.e. the same input and output indexes), and outputting them
/// in suitable minibatches as defined by ExampleMergingConfig.
class DiscriminativeExampleMerger {
public:
DiscriminativeExampleMerger(const ExampleMergingConfig &config,
NnetDiscriminativeExampleWriter *writer);
// This function accepts an example, and if possible, writes a merged example
// out. The ownership of the pointer 'a' is transferred to this class when
// you call this function.
void AcceptExample(NnetDiscriminativeExample *a);
// This function announces to the class that the input has finished, so it
// should flush out any smaller-sized minibatches, as dictated by the config.
// This will be called in the destructor, but you can call it explicitly when
// all the input is done if you want to; it won't repeat anything if called
// twice. It also prints the stats.
void Finish();
// returns a suitable exit status for a program.
int32 ExitStatus() { Finish(); return (num_egs_written_ > 0 ? 0 : 1); }
~DiscriminativeExampleMerger() { Finish(); };
private:
// called by Finish() and AcceptExample(). Merges, updates the stats, and
// writes. The 'egs' is non-const only because the egs are temporarily
// changed inside MergeDiscriminativeEgs. The pointer 'egs' is still owned
// by the caller.
void WriteMinibatch(std::vector<NnetDiscriminativeExample> *egs);
bool finished_;
int32 num_egs_written_;
const ExampleMergingConfig &config_;
NnetDiscriminativeExampleWriter *writer_;
ExampleMergingStats stats_;
// Note: the "key" into the egs is the first element of the vector.
typedef unordered_map<NnetDiscriminativeExample*,
std::vector<NnetDiscriminativeExample*>,
NnetDiscriminativeExampleStructureHasher,
NnetDiscriminativeExampleStructureCompare> MapType;
MapType eg_to_egs_;
};
} // namespace nnet3
} // namespace kaldi
#endif // KALDI_NNET3_NNET_DISCRIMINATIVE_EXAMPLE_H_