forked from Xiaobin-Rong/gtcrn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
39 lines (29 loc) · 1.71 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.nn as nn
class HybridLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, pred_stft, true_stft):
device = pred_stft.device
pred_stft_real, pred_stft_imag = pred_stft[:,:,:,0], pred_stft[:,:,:,1]
true_stft_real, true_stft_imag = true_stft[:,:,:,0], true_stft[:,:,:,1]
pred_mag = torch.sqrt(pred_stft_real**2 + pred_stft_imag**2 + 1e-12)
true_mag = torch.sqrt(true_stft_real**2 + true_stft_imag**2 + 1e-12)
pred_real_c = pred_stft_real / (pred_mag**(0.7))
pred_imag_c = pred_stft_imag / (pred_mag**(0.7))
true_real_c = true_stft_real / (true_mag**(0.7))
true_imag_c = true_stft_imag / (true_mag**(0.7))
real_loss = nn.MSELoss()(pred_real_c, true_real_c)
imag_loss = nn.MSELoss()(pred_imag_c, true_imag_c)
mag_loss = nn.MSELoss()(pred_mag**(0.3), true_mag**(0.3))
y_pred = torch.istft(pred_stft_real+1j*pred_stft_imag, 512, 256, 512, window=torch.hann_window(512).pow(0.5).to(device))
y_true = torch.istft(true_stft_real+1j*true_stft_imag, 512, 256, 512, window=torch.hann_window(512).pow(0.5).to(device))
y_true = torch.sum(y_true * y_pred, dim=-1, keepdim=True) * y_true / (torch.sum(torch.square(y_true),dim=-1,keepdim=True) + 1e-8)
sisnr = - torch.log10(torch.norm(y_true, dim=-1, keepdim=True)**2 / (torch.norm(y_pred - y_true, dim=-1, keepdim=True)**2+1e-8) + 1e-8).mean()
return 30*(real_loss + imag_loss) + 70*mag_loss + sisnr
if __name__ == "__main__":
loss_func = HybridLoss()
pred_stft = torch.randn(1, 257, 63, 2)
true_stft = torch.randn(1, 257, 63, 2)
loss = loss_func(pred_stft, true_stft)
print(loss)