-
Notifications
You must be signed in to change notification settings - Fork 0
/
main2.py
91 lines (71 loc) · 2.64 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import cv2
print cv2.__version__
#cap = cv2.VideoCapture('walking_techwalkway.MOV')
# cap = cv2.VideoCapture(0)
cap = cv2.VideoCapture('Gondola.mp4')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 2500, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, useHarrisDetector= True, **feature_params)
masks = []
for mask in range(100):
masks.append(np.zeros_like(old_frame))
masks = np.array(masks)
# Create a mask image for drawing purposes
# mask = np.zeros_like(old_frame)
timer = 0
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
while p1 is None:
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st == 1]
print(p0)
#print(p1)
print(st)
good_old = p0[st == 1]
# draw the tricks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
for mask in np.nditer(masks):
masks = np.insert(masks, mask, masks[mask], cv2.line(np.delete(masks,mask), (a,b),(c,d), color[i].tolist(), 2))
# masks[mask] = cv2.line(masks[mask], (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,masks[0])
cv2.imshow('frame',img)
toEnd = masks.pop(0)
toEnd = np.zeros_like(old_frame)
masks.append(toEnd)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
if timer >= 20:
# while p1 is None:
# p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# while p0 is None:
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None,useHarrisDetector= True, **feature_params)
mask = np.zeros_like(old_frame)
timer = 0
timer += 1
#print(timer)
cv2.destroyAllWindows()
cap.release()