-
Notifications
You must be signed in to change notification settings - Fork 0
/
mainQofPoints.py
119 lines (97 loc) · 3.1 KB
/
mainQofPoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
import cv2
import multiprocessing as mp
print cv2.__version__
#cap = cv2.VideoCapture('walking_techwalkway.MOV')
# cap = cv2.VideoCapture(0)
cap = cv2.VideoCapture('Gondola.mp4')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 2500, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, useHarrisDetector= True, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
p_Q = mp.Queue()
p_Q.put(p0)
good_Q = mp.Queue()
sizeOfQ = 1
hasOldMask = False
timer = 0
print("start while")
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
while p1 is None:
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
p_Q.put(p1)
sizeOfQ += 1
if sizeOfQ > 10 :
p_Q.get()
sizeOfQ -= 1
for i in range(sizeOfQ):
print(i)
p = p_Q.get()
good_Q.put(p[st == 1])
p_Q.put(p)
# # Select good points
# good_new = p1[st == 1]
# print(p0)
# #print(p1)
# print(st)
# good_old = p0[st == 1]
good_old = good_Q.get()
good_new = good_Q.get()
for j in range(sizeOfQ - 1) :
print("start while")
# draw the tricks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
good_Q.put(good_old)
good_old = good_new
good_new = good_Q.get()
img = cv2.add(frame,mask)
if hasOldMask:
img = cv2.add(img, old_mask)
good_Q.put(good_new)
sizeOfQ += 1
good_Q = mp.Queue()
cv2.imshow('frame',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
if timer >= 20:
# while p1 is None:
# p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# while p0 is None:
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None,useHarrisDetector= True, **feature_params)
old_mask = mask
hasOldMask = True
p_Q = mp.Queue()
sizeOfQ = 0
good_Q = mp.Queue()
p_Q.put(p0)
mask = np.zeros_like(old_frame)
timer = 0
timer += 1
#print(timer)
cv2.destroyAllWindows()
cap.release()