forked from jblattgerste/sus-analysis-toolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLayouts.py
350 lines (333 loc) · 21 KB
/
Layouts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import pandas as pd
from dash import html, dcc
from dash import dash_table
import styles
per_question_context = html.Div([
html.Dl([
html.Dt(html.B("Question 1")),
html.Dd("I think that I would like to use this system frequently."),
html.Dt(html.B("Question 2")),
html.Dd("I found the system unnecessarily complex."),
html.Dt(html.B("Question 3")),
html.Dd("I thought the system was easy to use."),
html.Dt(html.B("Question 4")),
html.Dd("I think that I would need the support of a technical person to be able to use this system."),
html.Dt(html.B("Question 5")),
html.Dd("I found the various functions in this system were well integrated."),
html.Dt(html.B("Question 6")),
html.Dd("I thought there was too much inconsistency in this system."),
html.Dt(html.B("Question 7")),
html.Dd("I would imagine that most people would learn to use this system very quickly."),
html.Dt(html.B("Question 8")),
html.Dd("I found the system very cumbersome to use."),
html.Dt(html.B("Question 9")),
html.Dd("I felt very confident using the system."),
html.Dt(html.B("Question 10")),
html.Dd("I needed to learn a lot of things before I could get going with this system."),
])],
style={
'float': 'left'},
id='per-question-context',
)
editable_table_editor_panel = html.Div([
html.Label(
['This table shows the data that is currently plotted. You can add, change or delete data points.'
],
style={'display': 'block',
'padding': '10px 10px 0px 10px'
},
),
html.Label([
],
style={'display': 'block',
'padding': '10px 10px 10px 10px'
},
),
html.Div([
html.Button('Download as CSV', id='csv-data-button', className='button1'),
dcc.Download(id='download-csv-data')],
style=styles.download_div_style
),
],
className='editor'
)
editable_table_editor_panel_single = html.Div([
html.Label(
['This table shows the data that is currently plotted. You can change entries or add additional data points.'
],
style={'display': 'block',
'padding': '10px 10px 0px 10px'
},
),
html.Label([
],
style={'display': 'block',
'padding': '10px 10px 10px 10px'
},
),
html.Div([
html.Button('Download as CSV', id='csv-data-button-single', className='button1'),
dcc.Download(id='download-csv-data-single')],
style=styles.download_div_style
),
],
className='editor'
)
def getMainContent(app, VERSION):
main_Content = html.Div([
html.Div(
[html.Div(
[
html.H1('System Usability Scale Analysis Toolkit',
style={
'text-align': 'center',
'color': 'white'
}),
html.Div(
html.A(html.Button(['Back to Startpage'], className='button2'), href='/'),
# html.A(html.Img(src=app.get_asset_url('home_white.png'), width='30', height='30'), href='/'),
style={'text-align': 'center'}),
],
style={
'background-color': '#445262',
'padding': '50px',
'margin-top': '10px',
'margin-bottom': '10px',
'border-radius': '5px',
'box-shadow': '0 1rem 1rem -.5rem rgba(0, 0, 0, .4)'
}
),
html.Div(
[
html.Div([
html.Img(src=app.get_asset_url('SUSToolFlow.png'), style={'width': '75%'}),
html.Div(
html.Div([
html.Div([
html.Button(html.H1('Start Multi Variable Analysis'), id='start-tool-button',
className='startToolButton'),
html.Div([
html.H1('Or', style={'textAlign': 'center'}),
dcc.Upload(
id='upload-data-multi',
children=html.Div([
html.H1(['Drag and Drop or ',
html.A('click here to select CSV-file.')], style={'font-size':'1vw'})
], style={'margin': '1em'}),
style=styles.mainPageDownloadPanelStyle,
# Allow multiple files to be uploaded
multiple=False
),
],
className='centre',
style={'width': '90%'}),
],
className='inline-div'
),
html.Div([
html.Button(html.H1('Start Single Variable Analysis'),
id='start-tool-button-single',
className='startToolButton'),
html.Div([
html.H1('Or', style={'textAlign': 'center'}),
dcc.Upload(
id='upload-data-single',
children=html.Div([
html.H1(['Drag and Drop or ',
html.A('click here to select CSV-file.')],style={'font-size':'1vw'})
],style={'margin': '1em'}),
style=styles.mainPageDownloadPanelStyle,
# Allow multiple files to be uploaded
multiple=False
)
],
className='centre',
style={'width': '90%'}
),
],
className='inline-div'
)
],
className='centre',
style={'width': '75%'},
)
),
], style={'textAlign': 'center', 'margin-top': '20px'}),
# html.H2('CSV-File Upload', style={'textAlign': 'center'}),
html.Div([
], style={'text-align': 'center',
'width:': '75%'}),
html.P([
html.Details([html.Summary('What is the System Usability Scale (SUS)?',
style=styles.mainPageSummaryHeaderStyle, className="mainPage"),
'The ',
html.A('System Usability Scale by John Brooke',
href='https://scholar.google.de/citations?view_op=view_citation&hl=de&user=qjAGPUcAAAAJ&alert_preview_top_rm=2&citation_for_view=qjAGPUcAAAAJ:u5HHmVD_uO8C'),
' is a popular questionnaire to measure perceived usability. It consists of 10 likert-scale'
' questions, where participants responses range from \'Strongly disagree\' to '
'\'Strongly agree\'. The results are then calculated into a single 0 - 100 score called the SUS score. Multiple SUS scores represent the SUS study score.'
' It is simple to apply, validated through years of its application, easy to understand for participants, ',html.A('available in multiple languages', href='https://jblattgerste.github.io/sus-pdf-generator'), ' and can be used for any system that requires human interaction.',
], open=False, className="mainPage")], style=styles.mainPageSummaryParagraph),
html.P([
html.Details([html.Summary(
'What is the "SUS Analysis Toolkit"?', style=styles.mainPageSummaryHeaderStyle,
className="mainPage"),
'The SUS Analysis Toolkit is an ',
html.A('open source', href='https://github.com/jblattgerste/sus-analysis-toolkit'),
' web-based toolkit for the analysis of single- and multivariable SUS usability studies developed by the ',
html.A('Mixality Research Group', href='https://mixality.de/sus-analysis-toolkit/'),
'. The toolkit provides a compilation of useful insights and contextualisation approaches based on findings from the scientific literature for the System Usability Scale questionnaire. It allows researchers and practisionaires to easily calculate and plot comparative, iterative and single variable SUS usability study datasets. Furthermore, it provides utility to contextualize the meaning of calculated scores, compare them against scores gathered in meta-analyses, calculate SUS scores conclusiveness and analysing the contribution of specific questions of the 10-item questionnaire towards the SUS study scores. A particular focus lies on producing camera-ready scientific figures and calculations to be directly used in scientific publications and presentations. ',
html.Br(),
], open=False, className="mainPage")], style=styles.mainPageSummaryParagraph),
html.P([html.Details([
html.Summary(
'How can i use the "SUS Analysis Toolkit"?', style=styles.mainPageSummaryHeaderStyle,
className="mainPage"
),
'After conducting either an iterative, comparative or singular SUS study, questionnaire results have to be converted into a CSV file that consists of one column for each of the 10 questionnaire items in their original order'
' and the last column as the identifier for the variable.',
' Therefore, each row contains the results of one filled out questionnaire and the associated variable. For the single variable analysis, there can either be only one variable present or the column for the variable can be deleted.'
' Values for the individual questionnaire items in the CSV file have to be between 1 (Strongly Disagree) and 5 (Strongly Agree). Other or empty values can not be processed. ',
'(Exemplary CSV templates are provided for the multi variable CSV file: ',
html.A('Download', href=app.get_asset_url('studyData.csv'), download='studyData.csv'),
' and the single variable CSV file: ',
html.A('Download', href=app.get_asset_url('singleStudyData.csv'), download='studyData.csv'),
'. You can utilize them using a text editor or CSV editors like: ',
html.A('CsvTextEditor', href='https://github.com/WildGums/CsvTextEditor'),
', ',
html.A('CSV-Editor', href='https://github.com/ritsrivastava01/CSV-Editor'),
' or ',
html.A('Table Tool', href='https://github.com/jakob/TableTool'),
' on macOS). ',
'After the successfull upload, SUS scores, per-item contribution, the studies conclusiveness and contextualization onto meta-analysis are calcualted and plotted. The interactive plots can be viewed and customized with a multitude of available options. After the analysis and customization, individual charts, tables or the whole analysis can be downloaded and used.',
' Alternatively, since version 1.0.1, SUS questionnaire values can also be added in the tool directly and downloaded as a CSV for reuse.'
], open=False, className="mainPage")], style=styles.mainPageSummaryParagraph),
html.P([
html.Details([html.Summary(
'Licensing and Acknowledgement', style=styles.mainPageSummaryHeaderStyle,
className="mainPage"
),
''
' The open source SUS Analysis Toolkit is licensed under the MIT license and can be used, extended and redistributed for commercial and non-commercial applications without attribtution. The ownership of generated calculations, interpretations, tables, and plots fully remain with the user of the tool. '
'If you use this toolkit in the scientific context, we would appreciate an acknowledgement in form of a ',
html.A('citation to our tool', href=app.get_asset_url('BibTex.txt'),
download='BibTex.txt'),
' and recommend citing the primary sources for the insights utilized.',
html.Br(),
], open=False, className="mainPage")], style=styles.mainPageSummaryParagraph),
html.P([
]),
html.P([
]),
], id='landing-page', style={'display': 'block',
'margin-left': 'auto',
'margin-right': 'auto'}),
html.Div(id='graph-content', style=styles.graph_div_style, children=[
html.Div([
dcc.Download(id='download-all-charts-data'),
dcc.Tabs([
dcc.Tab(id='editable-table-tab',
value='editable-table-tab',
label='Raw SUS Data',
children=[
html.Div([
html.Div([
html.Div(id='table-error-icon', className='tooltip', children=[
html.Img(src=app.get_asset_url('exclamation-mark.png'),
style={'height': '2em'}), html.Span(
'You\'ve either entered a value that is not between 1 and 5, or there are empty cells. The plots will not update until this is fixed.',
className='tooltiptext')],
style=styles.tableErrorIconDefaultStyle),
dash_table.DataTable(
id='editable-table',
editable=True,
row_deletable=True,
style_table={'overflowX': 'auto'}
),
html.Button('Add SUS Data Entry', className='button1', id='add-row-button',style={'margin-bottom':'10px'},
n_clicks=0),
],
style=styles.main_content_style),
editable_table_editor_panel],
style=styles.graph_editor_container),
],
selected_style=styles.tab_selected_style,
),
dcc.Tab(id='main-plot-tab',
label='SUS Score',
selected_style=styles.tab_selected_style),
dcc.Tab(id='percentile-plot-tab',
label='SUS Score on Percentile-Curve',
selected_style=styles.tab_selected_style
),
dcc.Tab(id='per-item-tab',
label='Per Item Chart',
selected_style=styles.tab_selected_style
),
dcc.Tab(id='conclusiveness-tab',
label='Conclusiveness Chart',
selected_style=styles.tab_selected_style
),
],
value='editable-table-tab')
],
id='multi-study-content',
style={'display': 'none'}),
html.Div([dcc.Tabs([
dcc.Tab(id='single-study-editable-table',
label='Raw SUS Data',
children=[html.Div([
html.Div([
html.Div(id='table-error-icon-single', className='tooltip', children=[
html.Img(src=app.get_asset_url('exclamation-mark.png'),
style={'height': '2em'}), html.Span(
'You\'ve either entered a value that is not between 1 and 5, or there are empty cells. The plots will not update until this is fixed.',
className='tooltiptext')],
style=styles.tableErrorIconDefaultStyle),
dash_table.DataTable(
id='editable-table-single',
editable=True,
row_deletable=True,
style_table={'overflowX': 'auto'}
),
html.Button('Add SUS Data Entry', className='button1', id='add-row-button-single',
n_clicks=0),
],
style=styles.main_content_style),
editable_table_editor_panel_single],
style=styles.graph_editor_container),
],
selected_style=styles.tab_selected_style),
dcc.Tab(id='single-study-tab',
label='SUS Dashboard Plot',
selected_style=styles.tab_selected_style),
])],
id='single-study-content',
style={'display': 'none',
}
)
]),
# This stores the session data
dcc.Store(id='sessionPlotData-multi'),
dcc.Store(id='sessionPlotData-single'),
],
style={
'margin-right': 'auto',
# 'position': 'absolute',
# 'left': '50%',
# 'margin-right': '-50%',
'margin-left': 'auto',
'width': '80%'
# 'transform': 'translate(-50%)',
}
),
html.Div([VERSION], className='bottomright')]
)
return main_Content
def CreateDataTableLayout(df=pd.DataFrame()):
return [dash_table.DataTable(
id='editable-table',
data=df.to_dict('records'),
columns=[{"name": i, "id": i} for i in df.columns],
editable=True
)]