forked from coin-or/Clp
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAbcDualRowDantzig.cpp
414 lines (405 loc) · 13 KB
/
AbcDualRowDantzig.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/* $Id$ */
// Copyright (C) 2002, International Business Machines
// Corporation and others, Copyright (C) 2012, FasterCoin. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "CoinPragma.hpp"
#include "AbcSimplex.hpp"
#include "AbcDualRowDantzig.hpp"
#include "AbcSimplexFactorization.hpp"
#include "CoinIndexedVector.hpp"
#include "CoinHelperFunctions.hpp"
#ifndef CLP_DUAL_COLUMN_MULTIPLIER
#define CLP_DUAL_COLUMN_MULTIPLIER 1.01
#endif
//#############################################################################
// Constructors / Destructor / Assignment
//#############################################################################
//-------------------------------------------------------------------
// Default Constructor
//-------------------------------------------------------------------
AbcDualRowDantzig::AbcDualRowDantzig()
: AbcDualRowPivot()
, infeasible_(NULL)
{
type_ = 1;
}
//-------------------------------------------------------------------
// Copy constructor
//-------------------------------------------------------------------
AbcDualRowDantzig::AbcDualRowDantzig(const AbcDualRowDantzig &rhs)
: AbcDualRowPivot(rhs)
, infeasible_(NULL)
{
model_ = rhs.model_;
if ((model_ && model_->whatsChanged() & 1) != 0) {
if (rhs.infeasible_) {
infeasible_ = new CoinIndexedVector(rhs.infeasible_);
} else {
infeasible_ = NULL;
}
}
}
//-------------------------------------------------------------------
// Destructor
//-------------------------------------------------------------------
AbcDualRowDantzig::~AbcDualRowDantzig()
{
delete infeasible_;
}
//----------------------------------------------------------------
// Assignment operator
//-------------------------------------------------------------------
AbcDualRowDantzig &
AbcDualRowDantzig::operator=(const AbcDualRowDantzig &rhs)
{
if (this != &rhs) {
AbcDualRowPivot::operator=(rhs);
delete infeasible_;
if (rhs.infeasible_ != NULL) {
infeasible_ = new CoinIndexedVector(rhs.infeasible_);
} else {
infeasible_ = NULL;
}
}
return *this;
}
/*
1) before factorization
2) after factorization
3) just redo infeasibilities
4) restore weights
*/
void AbcDualRowDantzig::saveWeights(AbcSimplex *model, int mode)
{
model_ = model;
int numberRows = model_->numberRows();
if (mode == 1) {
// Check if size has changed
if (infeasible_ && infeasible_->capacity() != numberRows) {
// size has changed - clear everything
delete infeasible_;
infeasible_ = NULL;
}
} else if (mode != 3 && !infeasible_) {
infeasible_ = new CoinIndexedVector();
infeasible_->reserve(numberRows);
}
if (mode >= 2) {
recomputeInfeasibilities();
}
}
// Recompute infeasibilities
void AbcDualRowDantzig::recomputeInfeasibilities()
{
int numberRows = model_->numberRows();
infeasible_->clear();
double tolerance = model_->currentPrimalTolerance();
const double *COIN_RESTRICT solutionBasic = model_->solutionBasic();
const double *COIN_RESTRICT lowerBasic = model_->lowerBasic();
const double *COIN_RESTRICT upperBasic = model_->upperBasic();
for (int iRow = 0; iRow < numberRows; iRow++) {
double value = solutionBasic[iRow];
double lower = lowerBasic[iRow];
double upper = upperBasic[iRow];
if (value < lower - tolerance) {
value -= lower;
#ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER
if (lower == upper)
value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables
#endif
// store in list
infeasible_->quickAdd(iRow, fabs(value));
} else if (value > upper + tolerance) {
value -= upper;
#ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER
if (lower == upper)
value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables
#endif
// store in list
infeasible_->quickAdd(iRow, fabs(value));
}
}
}
#if ABC_PARALLEL == 2
static void choose(CoinIndexedVector *infeasible,
int &chosenRowSave, double &largestSave, int first, int last,
double tolerance)
{
if (last - first > 256) {
int mid = (last + first) >> 1;
int chosenRow2 = chosenRowSave;
double largest2 = largestSave;
cilk_spawn choose(infeasible, chosenRow2, largest2, first, mid,
tolerance);
choose(infeasible, chosenRowSave, largestSave, mid, last,
tolerance);
cilk_sync;
if (largest2 > largestSave) {
largestSave = largest2;
chosenRowSave = chosenRow2;
}
} else {
const int *index = infeasible->getIndices();
const double *infeas = infeasible->denseVector();
double largest = largestSave;
int chosenRow = chosenRowSave;
for (int i = first; i < last; i++) {
int iRow = index[i];
double value = infeas[iRow];
if (value > largest) {
largest = value;
chosenRow = iRow;
}
}
chosenRowSave = chosenRow;
largestSave = largest;
}
}
#endif
// Returns pivot row, -1 if none
int AbcDualRowDantzig::pivotRow()
{
assert(model_);
double *COIN_RESTRICT infeas = infeasible_->denseVector();
int *COIN_RESTRICT index = infeasible_->getIndices();
int number = infeasible_->getNumElements();
double tolerance = model_->currentPrimalTolerance();
// we can't really trust infeasibilities if there is primal error
if (model_->largestPrimalError() > 1.0e-8)
tolerance *= model_->largestPrimalError() / 1.0e-8;
int numberRows = model_->numberRows();
const double *COIN_RESTRICT solutionBasic = model_->solutionBasic();
const double *COIN_RESTRICT lowerBasic = model_->lowerBasic();
const double *COIN_RESTRICT upperBasic = model_->upperBasic();
const int *pivotVariable = model_->pivotVariable();
// code so has list of infeasibilities (like steepest)
int numberWanted = CoinMax(2000, numberRows >> 4);
numberWanted = CoinMax(numberWanted, number >> 2);
if (model_->largestPrimalError() > 1.0e-3)
numberWanted = number + 1; // be safe
// Setup two passes
int start[4];
start[1] = number;
start[2] = 0;
double dstart = static_cast< double >(number) * model_->randomNumberGenerator()->randomDouble();
start[0] = static_cast< int >(dstart);
start[3] = start[0];
double largest = tolerance;
int chosenRow = -1;
int saveNumberWanted = numberWanted;
#ifdef DO_REDUCE
bool doReduce = true;
int lastChosen = -1;
double lastLargest = 0.0;
#endif
for (int iPass = 0; iPass < 2; iPass++) {
int endThis = start[2 * iPass + 1];
int startThis = start[2 * iPass];
while (startThis < endThis) {
int end = CoinMin(endThis, startThis + numberWanted);
#ifdef DO_REDUCE
if (doReduce) {
choose(infeasible, chosenRow, largest, startThis, end, tolerance);
if (chosenRow != lastChosen) {
assert(chosenRow >= 0);
if (model_->flagged(pivotVariable[chosenRow]) || (solutionBasic[chosenRow] <= upperBasic[chosenRow] + tolerance && solutionBasic[chosenRow] >= lowerBasic[chosenRow] - tolerance)) {
doReduce = false;
chosenRow = lastChosen;
largest = lastLargest;
} else {
lastChosen = chosenRow;
lastLargest = largest;
}
}
}
if (!doReduce) {
#endif
for (int i = startThis; i < end; i++) {
int iRow = index[i];
double value = infeas[iRow];
if (value > largest) {
if (!model_->flagged(pivotVariable[iRow])) {
if (solutionBasic[iRow] > upperBasic[iRow] + tolerance || solutionBasic[iRow] < lowerBasic[iRow] - tolerance) {
chosenRow = iRow;
largest = value;
}
}
}
}
#ifdef DO_REDUCE
}
#endif
numberWanted -= (end - startThis);
if (!numberWanted) {
if (chosenRow >= 0)
break;
else
numberWanted = (saveNumberWanted + 1) >> 1;
}
startThis = end;
}
if (!numberWanted) {
if (chosenRow >= 0)
break;
else
numberWanted = (saveNumberWanted + 1) >> 1;
}
}
return chosenRow;
}
// FT update and returns pivot alpha
double
AbcDualRowDantzig::updateWeights(CoinIndexedVector &input, CoinIndexedVector &updatedColumn)
{
// Do FT update
model_->factorization()->updateColumnFT(updatedColumn);
// pivot element
double alpha = 0.0;
// look at updated column
double *work = updatedColumn.denseVector();
int pivotRow = model_->lastPivotRow();
assert(pivotRow == model_->pivotRow());
assert(!updatedColumn.packedMode());
alpha = work[pivotRow];
return alpha;
}
double
AbcDualRowDantzig::updateWeights1(CoinIndexedVector &input, CoinIndexedVector &updateColumn)
{
return updateWeights(input, updateColumn);
}
#if ABC_PARALLEL == 2
static void update(int first, int last,
const int *COIN_RESTRICT which, double *COIN_RESTRICT work,
const double *COIN_RESTRICT lowerBasic, double *COIN_RESTRICT solutionBasic,
const double *COIN_RESTRICT upperBasic, double theta, double tolerance)
{
if (last - first > 256) {
int mid = (last + first) >> 1;
cilk_spawn update(first, mid, which, work, lowerBasic, solutionBasic,
upperBasic, theta, tolerance);
update(mid, last, which, work, lowerBasic, solutionBasic,
upperBasic, theta, tolerance);
cilk_sync;
} else {
for (int i = first; i < last; i++) {
int iRow = which[i];
double updateValue = work[iRow];
double value = solutionBasic[iRow];
double change = theta * updateValue;
value -= change;
double lower = lowerBasic[iRow];
double upper = upperBasic[iRow];
solutionBasic[iRow] = value;
if (value < lower - tolerance) {
value -= lower;
#ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER
if (lower == upper)
value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables
#endif
} else if (value > upper + tolerance) {
value -= upper;
#ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER
if (lower == upper)
value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables
#endif
} else {
// feasible
value = 0.0;
}
// store
work[iRow] = fabs(value);
}
}
}
#endif
/* Updates primal solution (and maybe list of candidates)
Uses input vector which it deletes
Computes change in objective function
*/
void AbcDualRowDantzig::updatePrimalSolution(CoinIndexedVector &primalUpdate,
double theta)
{
double *COIN_RESTRICT work = primalUpdate.denseVector();
int numberNonZero = primalUpdate.getNumElements();
int *which = primalUpdate.getIndices();
double tolerance = model_->currentPrimalTolerance();
double *COIN_RESTRICT infeas = infeasible_->denseVector();
double *COIN_RESTRICT solutionBasic = model_->solutionBasic();
const double *COIN_RESTRICT lowerBasic = model_->lowerBasic();
const double *COIN_RESTRICT upperBasic = model_->upperBasic();
assert(!primalUpdate.packedMode());
#if 0 //ABC_PARALLEL==2
update(0,numberNonZero,which,work,
lowerBasic,solutionBasic,upperBasic,
theta,tolerance);
for (int i = 0; i < numberNonZero; i++) {
int iRow = which[i];
double infeasibility=work[iRow];
work[iRow]=0.0;
if (infeasibility) {
if (infeas[iRow])
infeas[iRow] = infeasibility; // already there
else
infeasible_->quickAdd(iRow, infeasibility);
} else {
// feasible - was it infeasible - if so set tiny
if (infeas[iRow])
infeas[iRow] = COIN_INDEXED_REALLY_TINY_ELEMENT;
}
}
#else
for (int i = 0; i < numberNonZero; i++) {
int iRow = which[i];
double updateValue = work[iRow];
work[iRow] = 0.0;
double value = solutionBasic[iRow];
double change = theta * updateValue;
value -= change;
double lower = lowerBasic[iRow];
double upper = upperBasic[iRow];
solutionBasic[iRow] = value;
if (value < lower - tolerance) {
value -= lower;
#ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER
if (lower == upper)
value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables
#endif
// store in list
if (infeas[iRow])
infeas[iRow] = fabs(value); // already there
else
infeasible_->quickAdd(iRow, fabs(value));
} else if (value > upper + tolerance) {
value -= upper;
#ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER
if (lower == upper)
value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables
#endif
// store in list
if (infeas[iRow])
infeas[iRow] = fabs(value); // already there
else
infeasible_->quickAdd(iRow, fabs(value));
} else {
// feasible - was it infeasible - if so set tiny
if (infeas[iRow])
infeas[iRow] = COIN_INDEXED_REALLY_TINY_ELEMENT;
}
}
#endif
primalUpdate.setNumElements(0);
}
//-------------------------------------------------------------------
// Clone
//-------------------------------------------------------------------
AbcDualRowPivot *AbcDualRowDantzig::clone(bool CopyData) const
{
if (CopyData) {
return new AbcDualRowDantzig(*this);
} else {
return new AbcDualRowDantzig();
}
}
/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/