forked from coin-or/Clp
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathClpCholeskyUfl.cpp
476 lines (458 loc) · 13.8 KB
/
ClpCholeskyUfl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/* $Id$ */
// Copyright (C) 2004, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "ClpConfig.h"
extern "C" {
#ifndef COIN_HAS_CHOLMOD
#ifndef COIN_HAS_AMD
#error "Need to have AMD or CHOLMOD to compile ClpCholeskyUfl."
#else
#include "amd.h"
#endif
#else
#include "cholmod.h"
#endif
}
#include "CoinPragma.hpp"
#include "ClpCholeskyUfl.hpp"
#include "ClpMessage.hpp"
#include "ClpInterior.hpp"
#include "CoinHelperFunctions.hpp"
#include "ClpHelperFunctions.hpp"
//#############################################################################
// Constructors / Destructor / Assignment
//#############################################################################
//-------------------------------------------------------------------
// Default Constructor
//-------------------------------------------------------------------
ClpCholeskyUfl::ClpCholeskyUfl(int denseThreshold)
: ClpCholeskyBase(denseThreshold)
{
type_ = 14;
L_ = NULL;
c_ = NULL;
#ifdef COIN_HAS_CHOLMOD
c_ = (cholmod_common *)malloc(sizeof(cholmod_common));
cholmod_start(c_);
// Can't use supernodal as may not be positive definite
c_->supernodal = 0;
#endif
}
//-------------------------------------------------------------------
// Copy constructor
//-------------------------------------------------------------------
ClpCholeskyUfl::ClpCholeskyUfl(const ClpCholeskyUfl &rhs)
: ClpCholeskyBase(rhs)
{
abort();
}
//-------------------------------------------------------------------
// Destructor
//-------------------------------------------------------------------
ClpCholeskyUfl::~ClpCholeskyUfl()
{
#ifdef COIN_HAS_CHOLMOD
cholmod_free_factor(&L_, c_);
cholmod_finish(c_);
free(c_);
#endif
}
//----------------------------------------------------------------
// Assignment operator
//-------------------------------------------------------------------
ClpCholeskyUfl &
ClpCholeskyUfl::operator=(const ClpCholeskyUfl &rhs)
{
if (this != &rhs) {
ClpCholeskyBase::operator=(rhs);
abort();
}
return *this;
}
//-------------------------------------------------------------------
// Clone
//-------------------------------------------------------------------
ClpCholeskyBase *ClpCholeskyUfl::clone() const
{
return new ClpCholeskyUfl(*this);
}
#ifndef COIN_HAS_CHOLMOD
/* Orders rows and saves pointer to matrix.and model */
int ClpCholeskyUfl::order(ClpInterior *model)
{
int iRow;
model_ = model;
if (preOrder(false, true, doKKT_))
return -1;
permuteInverse_ = new int[numberRows_];
permute_ = new int[numberRows_];
double Control[AMD_CONTROL];
double Info[AMD_INFO];
amd_defaults(Control);
//amd_control(Control);
int returnCode = amd_order(numberRows_, choleskyStart_, choleskyRow_,
permute_, Control, Info);
delete[] choleskyRow_;
choleskyRow_ = NULL;
delete[] choleskyStart_;
choleskyStart_ = NULL;
//amd_info(Info);
if (returnCode != AMD_OK) {
std::cout << "AMD ordering failed" << std::endl;
return 1;
}
for (iRow = 0; iRow < numberRows_; iRow++) {
permuteInverse_[permute_[iRow]] = iRow;
}
return 0;
}
#else
/* Orders rows and saves pointer to matrix.and model */
int ClpCholeskyUfl::order(ClpInterior *model)
{
numberRows_ = model->numberRows();
if (doKKT_) {
numberRows_ += numberRows_ + model->numberColumns();
printf("finish coding UFL KKT!\n");
abort();
}
rowsDropped_ = new char[numberRows_];
memset(rowsDropped_, 0, numberRows_);
numberRowsDropped_ = 0;
model_ = model;
rowCopy_ = model->clpMatrix()->reverseOrderedCopy();
// Space for starts
choleskyStart_ = new CoinBigIndex[numberRows_ + 1];
const CoinBigIndex *columnStart = model_->clpMatrix()->getVectorStarts();
const int *columnLength = model_->clpMatrix()->getVectorLengths();
const int *row = model_->clpMatrix()->getIndices();
const CoinBigIndex *rowStart = rowCopy_->getVectorStarts();
const int *rowLength = rowCopy_->getVectorLengths();
const int *column = rowCopy_->getIndices();
// We need two arrays for counts
int *which = new int[numberRows_];
int *used = new int[numberRows_ + 1];
CoinZeroN(used, numberRows_);
int iRow;
sizeFactor_ = 0;
for (iRow = 0; iRow < numberRows_; iRow++) {
int number = 1;
// make sure diagonal exists
which[0] = iRow;
used[iRow] = 1;
if (!rowsDropped_[iRow]) {
CoinBigIndex startRow = rowStart[iRow];
CoinBigIndex endRow = rowStart[iRow] + rowLength[iRow];
for (CoinBigIndex k = startRow; k < endRow; k++) {
int iColumn = column[k];
CoinBigIndex start = columnStart[iColumn];
CoinBigIndex end = columnStart[iColumn] + columnLength[iColumn];
for (CoinBigIndex j = start; j < end; j++) {
int jRow = row[j];
if (jRow >= iRow && !rowsDropped_[jRow]) {
if (!used[jRow]) {
used[jRow] = 1;
which[number++] = jRow;
}
}
}
}
sizeFactor_ += number;
int j;
for (j = 0; j < number; j++)
used[which[j]] = 0;
}
}
delete[] which;
// Now we have size - create arrays and fill in
try {
choleskyRow_ = new int[sizeFactor_];
} catch (...) {
// no memory
delete[] choleskyStart_;
choleskyStart_ = NULL;
return -1;
}
try {
sparseFactor_ = new double[sizeFactor_];
} catch (...) {
// no memory
delete[] choleskyRow_;
choleskyRow_ = NULL;
delete[] choleskyStart_;
choleskyStart_ = NULL;
return -1;
}
sizeFactor_ = 0;
which = choleskyRow_;
for (iRow = 0; iRow < numberRows_; iRow++) {
int number = 1;
// make sure diagonal exists
which[0] = iRow;
used[iRow] = 1;
choleskyStart_[iRow] = sizeFactor_;
if (!rowsDropped_[iRow]) {
CoinBigIndex startRow = rowStart[iRow];
CoinBigIndex endRow = rowStart[iRow] + rowLength[iRow];
for (CoinBigIndex k = startRow; k < endRow; k++) {
int iColumn = column[k];
CoinBigIndex start = columnStart[iColumn];
CoinBigIndex end = columnStart[iColumn] + columnLength[iColumn];
for (CoinBigIndex j = start; j < end; j++) {
int jRow = row[j];
if (jRow >= iRow && !rowsDropped_[jRow]) {
if (!used[jRow]) {
used[jRow] = 1;
which[number++] = jRow;
}
}
}
}
sizeFactor_ += number;
int j;
for (j = 0; j < number; j++)
used[which[j]] = 0;
// Sort
std::sort(which, which + number);
// move which on
which += number;
}
}
choleskyStart_[numberRows_] = sizeFactor_;
delete[] used;
permuteInverse_ = new int[numberRows_];
permute_ = new int[numberRows_];
cholmod_sparse A;
A.nrow = numberRows_;
A.ncol = numberRows_;
A.nzmax = choleskyStart_[numberRows_];
A.p = choleskyStart_;
A.i = choleskyRow_;
A.x = NULL;
A.stype = -1;
A.itype = CHOLMOD_INT;
A.xtype = CHOLMOD_PATTERN;
A.dtype = CHOLMOD_DOUBLE;
A.sorted = 1;
A.packed = 1;
c_->nmethods = 9;
c_->postorder = true;
//c_->dbound=1.0e-20;
L_ = cholmod_analyze(&A, c_);
if (c_->status) {
COIN_DETAIL_PRINT(std::cout << "CHOLMOD ordering failed" << std::endl);
return 1;
} else {
COIN_DETAIL_PRINT(printf("%g nonzeros, flop count %g\n", c_->lnz, c_->fl));
}
for (iRow = 0; iRow < numberRows_; iRow++) {
permuteInverse_[iRow] = iRow;
permute_[iRow] = iRow;
}
return 0;
}
#endif
/* Does Symbolic factorization given permutation.
This is called immediately after order. If user provides this then
user must provide factorize and solve. Otherwise the default factorization is used
returns non-zero if not enough memory */
int ClpCholeskyUfl::symbolic()
{
#ifdef COIN_HAS_CHOLMOD
return 0;
#else
return ClpCholeskyBase::symbolic();
#endif
}
#ifdef COIN_HAS_CHOLMOD
/* Factorize - filling in rowsDropped and returning number dropped */
int ClpCholeskyUfl::factorize(const double *diagonal, int *rowsDropped)
{
const CoinBigIndex *columnStart = model_->clpMatrix()->getVectorStarts();
const int *columnLength = model_->clpMatrix()->getVectorLengths();
const int *row = model_->clpMatrix()->getIndices();
const double *element = model_->clpMatrix()->getElements();
const CoinBigIndex *rowStart = rowCopy_->getVectorStarts();
const int *rowLength = rowCopy_->getVectorLengths();
const int *column = rowCopy_->getIndices();
const double *elementByRow = rowCopy_->getElements();
int numberColumns = model_->clpMatrix()->getNumCols();
int iRow;
double *work = new double[numberRows_];
CoinZeroN(work, numberRows_);
const double *diagonalSlack = diagonal + numberColumns;
int newDropped = 0;
double largest;
//double smallest;
//perturbation
double perturbation = model_->diagonalPerturbation() * model_->diagonalNorm();
perturbation = 0.0;
perturbation = perturbation * perturbation;
if (perturbation > 1.0) {
#ifdef COIN_DEVELOP
//if (model_->model()->logLevel()&4)
std::cout << "large perturbation " << perturbation << std::endl;
#endif
perturbation = sqrt(perturbation);
;
perturbation = 1.0;
}
double delta2 = model_->delta(); // add delta*delta to diagonal
delta2 *= delta2;
for (iRow = 0; iRow < numberRows_; iRow++) {
double *put = sparseFactor_ + choleskyStart_[iRow];
int *which = choleskyRow_ + choleskyStart_[iRow];
int number = choleskyStart_[iRow + 1] - choleskyStart_[iRow];
if (!rowLength[iRow])
rowsDropped_[iRow] = 1;
if (!rowsDropped_[iRow]) {
CoinBigIndex startRow = rowStart[iRow];
CoinBigIndex endRow = rowStart[iRow] + rowLength[iRow];
work[iRow] = diagonalSlack[iRow] + delta2;
for (CoinBigIndex k = startRow; k < endRow; k++) {
int iColumn = column[k];
if (!whichDense_ || !whichDense_[iColumn]) {
CoinBigIndex start = columnStart[iColumn];
CoinBigIndex end = columnStart[iColumn] + columnLength[iColumn];
double multiplier = diagonal[iColumn] * elementByRow[k];
for (CoinBigIndex j = start; j < end; j++) {
int jRow = row[j];
if (jRow >= iRow && !rowsDropped_[jRow]) {
double value = element[j] * multiplier;
work[jRow] += value;
}
}
}
}
int j;
for (j = 0; j < number; j++) {
int jRow = which[j];
put[j] = work[jRow];
work[jRow] = 0.0;
}
} else {
// dropped
int j;
for (j = 1; j < number; j++) {
put[j] = 0.0;
}
put[0] = 1.0;
}
}
//check sizes
double largest2 = maximumAbsElement(sparseFactor_, sizeFactor_);
largest2 *= 1.0e-20;
largest = CoinMin(largest2, 1.0e-11);
int numberDroppedBefore = 0;
for (iRow = 0; iRow < numberRows_; iRow++) {
int dropped = rowsDropped_[iRow];
// Move to int array
rowsDropped[iRow] = dropped;
if (!dropped) {
CoinBigIndex start = choleskyStart_[iRow];
double diagonal = sparseFactor_[start];
if (diagonal > largest2) {
sparseFactor_[start] = CoinMax(diagonal, 1.0e-10);
} else {
sparseFactor_[start] = CoinMax(diagonal, 1.0e-10);
rowsDropped[iRow] = 2;
numberDroppedBefore++;
}
}
}
delete[] work;
cholmod_sparse A;
A.nrow = numberRows_;
A.ncol = numberRows_;
A.nzmax = choleskyStart_[numberRows_];
A.p = choleskyStart_;
A.i = choleskyRow_;
A.x = sparseFactor_;
A.stype = -1;
A.itype = CHOLMOD_INT;
A.xtype = CHOLMOD_REAL;
A.dtype = CHOLMOD_DOUBLE;
A.sorted = 1;
A.packed = 1;
cholmod_factorize(&A, L_, c_); /* factorize */
choleskyCondition_ = 1.0;
bool cleanCholesky;
if (model_->numberIterations() < 2000)
cleanCholesky = true;
else
cleanCholesky = false;
if (cleanCholesky) {
//drop fresh makes some formADAT easier
//int oldDropped=numberRowsDropped_;
if (newDropped || numberRowsDropped_) {
//std::cout <<"Rank "<<numberRows_-newDropped<<" ( "<<
// newDropped<<" dropped)";
//if (newDropped>oldDropped)
//std::cout<<" ( "<<newDropped-oldDropped<<" dropped this time)";
//std::cout<<std::endl;
newDropped = 0;
for (int i = 0; i < numberRows_; i++) {
int dropped = rowsDropped[i];
rowsDropped_[i] = (char)dropped;
if (dropped == 2) {
//dropped this time
rowsDropped[newDropped++] = i;
rowsDropped_[i] = 0;
}
}
numberRowsDropped_ = newDropped;
newDropped = -(2 + newDropped);
}
} else {
if (newDropped) {
newDropped = 0;
for (int i = 0; i < numberRows_; i++) {
int dropped = rowsDropped[i];
rowsDropped_[i] = (char)dropped;
if (dropped == 2) {
//dropped this time
rowsDropped[newDropped++] = i;
rowsDropped_[i] = 1;
}
}
}
numberRowsDropped_ += newDropped;
if (numberRowsDropped_ && 0) {
std::cout << "Rank " << numberRows_ - numberRowsDropped_ << " ( " << numberRowsDropped_ << " dropped)";
if (newDropped) {
std::cout << " ( " << newDropped << " dropped this time)";
}
std::cout << std::endl;
}
}
status_ = 0;
return newDropped;
}
#else
/* Factorize - filling in rowsDropped and returning number dropped */
int ClpCholeskyUfl::factorize(const double *diagonal, int *rowsDropped)
{
return ClpCholeskyBase::factorize(diagonal, rowsDropped);
}
#endif
#ifdef COIN_HAS_CHOLMOD
/* Uses factorization to solve. */
void ClpCholeskyUfl::solve(double *region)
{
cholmod_dense *x, *b;
b = cholmod_allocate_dense(numberRows_, 1, numberRows_, CHOLMOD_REAL, c_);
CoinMemcpyN(region, numberRows_, (double *)b->x);
x = cholmod_solve(CHOLMOD_A, L_, b, c_);
CoinMemcpyN((double *)x->x, numberRows_, region);
cholmod_free_dense(&x, c_);
cholmod_free_dense(&b, c_);
}
#else
void ClpCholeskyUfl::solve(double *region)
{
ClpCholeskyBase::solve(region);
}
#endif
/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/