forked from coin-or/Clp
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathClpLinearObjective.cpp
285 lines (270 loc) · 8.3 KB
/
ClpLinearObjective.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/* $Id$ */
// Copyright (C) 2003, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "CoinPragma.hpp"
#include "CoinIndexedVector.hpp"
#include "ClpFactorization.hpp"
#include "ClpSimplex.hpp"
#include "ClpLinearObjective.hpp"
#include "CoinHelperFunctions.hpp"
//#############################################################################
// Constructors / Destructor / Assignment
//#############################################################################
//-------------------------------------------------------------------
// Default Constructor
//-------------------------------------------------------------------
ClpLinearObjective::ClpLinearObjective()
: ClpObjective()
{
type_ = 1;
objective_ = NULL;
numberColumns_ = 0;
}
//-------------------------------------------------------------------
// Useful Constructor
//-------------------------------------------------------------------
ClpLinearObjective::ClpLinearObjective(const double *objective,
int numberColumns)
: ClpObjective()
{
type_ = 1;
numberColumns_ = numberColumns;
objective_ = CoinCopyOfArray(objective, numberColumns_, 0.0);
}
//-------------------------------------------------------------------
// Copy constructor
//-------------------------------------------------------------------
ClpLinearObjective::ClpLinearObjective(const ClpLinearObjective &rhs)
: ClpObjective(rhs)
{
numberColumns_ = rhs.numberColumns_;
objective_ = CoinCopyOfArray(rhs.objective_, numberColumns_);
}
/* Subset constructor. Duplicates are allowed
and order is as given.
*/
ClpLinearObjective::ClpLinearObjective(const ClpLinearObjective &rhs,
int numberColumns,
const int *whichColumn)
: ClpObjective(rhs)
{
objective_ = NULL;
numberColumns_ = 0;
if (numberColumns > 0) {
// check valid lists
int numberBad = 0;
int i;
for (i = 0; i < numberColumns; i++)
if (whichColumn[i] < 0 || whichColumn[i] >= rhs.numberColumns_)
numberBad++;
if (numberBad)
throw CoinError("bad column list", "subset constructor",
"ClpLinearObjective");
numberColumns_ = numberColumns;
objective_ = new double[numberColumns_];
for (i = 0; i < numberColumns_; i++)
objective_[i] = rhs.objective_[whichColumn[i]];
}
}
//-------------------------------------------------------------------
// Destructor
//-------------------------------------------------------------------
ClpLinearObjective::~ClpLinearObjective()
{
delete[] objective_;
}
//----------------------------------------------------------------
// Assignment operator
//-------------------------------------------------------------------
ClpLinearObjective &
ClpLinearObjective::operator=(const ClpLinearObjective &rhs)
{
if (this != &rhs) {
ClpObjective::operator=(rhs);
numberColumns_ = rhs.numberColumns_;
delete[] objective_;
objective_ = CoinCopyOfArray(rhs.objective_, numberColumns_);
}
return *this;
}
// Returns gradient
double *
ClpLinearObjective::gradient(const ClpSimplex * /*model*/,
const double * /*solution*/, double &offset,
bool /*refresh*/,
int /*includeLinear*/)
{
// not sure what to do about scaling
//assert (!model);
//assert (includeLinear==2); //otherwise need to return all zeros
offset = 0.0;
return objective_;
}
/* Returns reduced gradient.Returns an offset (to be added to current one).
*/
double
ClpLinearObjective::reducedGradient(ClpSimplex *model, double *region,
bool /*useFeasibleCosts*/)
{
int numberRows = model->numberRows();
//work space
CoinIndexedVector *workSpace = model->rowArray(0);
CoinIndexedVector arrayVector;
arrayVector.reserve(numberRows + 1);
int iRow;
#ifdef CLP_DEBUG
workSpace->checkClear();
#endif
double *array = arrayVector.denseVector();
int *index = arrayVector.getIndices();
int number = 0;
const double *cost = model->costRegion();
//assert (!useFeasibleCosts);
const int *pivotVariable = model->pivotVariable();
for (iRow = 0; iRow < numberRows; iRow++) {
int iPivot = pivotVariable[iRow];
double value = cost[iPivot];
if (value) {
array[iRow] = value;
index[number++] = iRow;
}
}
arrayVector.setNumElements(number);
int numberColumns = model->numberColumns();
// Btran basic costs
double *work = workSpace->denseVector();
model->factorization()->updateColumnTranspose(workSpace, &arrayVector);
ClpFillN(work, numberRows, 0.0);
// now look at dual solution
double *rowReducedCost = region + numberColumns;
double *dual = rowReducedCost;
double *rowCost = model->costRegion(0);
for (iRow = 0; iRow < numberRows; iRow++) {
dual[iRow] = array[iRow];
}
double *dj = region;
ClpDisjointCopyN(model->costRegion(1), numberColumns, dj);
model->transposeTimes(-1.0, dual, dj);
for (iRow = 0; iRow < numberRows; iRow++) {
// slack
double value = dual[iRow];
value += rowCost[iRow];
rowReducedCost[iRow] = value;
}
return 0.0;
}
/* Returns step length which gives minimum of objective for
solution + theta * change vector up to maximum theta.
arrays are numberColumns+numberRows
*/
double
ClpLinearObjective::stepLength(ClpSimplex *model,
const double *solution,
const double *change,
double maximumTheta,
double ¤tObj,
double &predictedObj,
double &thetaObj)
{
const double *cost = model->costRegion();
double delta = 0.0;
int numberRows = model->numberRows();
int numberColumns = model->numberColumns();
currentObj = 0.0;
thetaObj = 0.0;
for (int iColumn = 0; iColumn < numberColumns + numberRows; iColumn++) {
delta += cost[iColumn] * change[iColumn];
currentObj += cost[iColumn] * solution[iColumn];
}
thetaObj = currentObj + delta * maximumTheta;
predictedObj = currentObj + delta * maximumTheta;
if (delta < 0.0) {
return maximumTheta;
} else {
printf("odd linear direction %g\n", delta);
return 0.0;
}
}
// Return objective value (without any ClpModel offset) (model may be NULL)
double
ClpLinearObjective::objectiveValue(const ClpSimplex *model, const double *solution) const
{
const double *cost = objective_;
if (model && model->costRegion())
cost = model->costRegion();
double currentObj = 0.0;
for (int iColumn = 0; iColumn < numberColumns_; iColumn++) {
currentObj += cost[iColumn] * solution[iColumn];
}
return currentObj;
}
//-------------------------------------------------------------------
// Clone
//-------------------------------------------------------------------
ClpObjective *ClpLinearObjective::clone() const
{
return new ClpLinearObjective(*this);
}
/* Subset clone. Duplicates are allowed
and order is as given.
*/
ClpObjective *
ClpLinearObjective::subsetClone(int numberColumns,
const int *whichColumns) const
{
return new ClpLinearObjective(*this, numberColumns, whichColumns);
}
// Resize objective
void ClpLinearObjective::resize(int newNumberColumns)
{
if (numberColumns_ != newNumberColumns) {
int i;
double *newArray = new double[newNumberColumns];
if (objective_)
CoinMemcpyN(objective_, CoinMin(newNumberColumns, numberColumns_), newArray);
delete[] objective_;
objective_ = newArray;
for (i = numberColumns_; i < newNumberColumns; i++)
objective_[i] = 0.0;
numberColumns_ = newNumberColumns;
}
}
// Delete columns in objective
void ClpLinearObjective::deleteSome(int numberToDelete, const int *which)
{
if (objective_) {
int i;
char *deleted = new char[numberColumns_];
int numberDeleted = 0;
CoinZeroN(deleted, numberColumns_);
for (i = 0; i < numberToDelete; i++) {
int j = which[i];
if (j >= 0 && j < numberColumns_ && !deleted[j]) {
numberDeleted++;
deleted[j] = 1;
}
}
int newNumberColumns = numberColumns_ - numberDeleted;
double *newArray = new double[newNumberColumns];
int put = 0;
for (i = 0; i < numberColumns_; i++) {
if (!deleted[i]) {
newArray[put++] = objective_[i];
}
}
delete[] objective_;
objective_ = newArray;
delete[] deleted;
numberColumns_ = newNumberColumns;
}
}
// Scale objective
void ClpLinearObjective::reallyScale(const double *columnScale)
{
for (int iColumn = 0; iColumn < numberColumns_; iColumn++) {
objective_[iColumn] *= columnScale[iColumn];
}
}
/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/