diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000..21ffbf0 Binary files /dev/null and b/.DS_Store differ diff --git a/index.html b/index.html index 385fd1a..465abd6 100644 --- a/index.html +++ b/index.html @@ -1,17 +1,18 @@ + - - - + + + - - + + @@ -24,17 +25,15 @@ - Academic Project Page + Bumblebee: Advancing Beyond Closed-Source Multi-Modal Models through Token Shrinkage - + - + @@ -44,6 +43,7 @@ + @@ -52,50 +52,50 @@
-

Academic Project Page

+

Bumblebee: Advancing Beyond Closed-Source Multi-Modal Models + through Token Shrinkage

- -
- Institution Name
Conferance name and year
-
*Indicates Equal Contribution
-
- -
- - + - -
-
-
- -

- Aliquam vitae elit ullamcorper tellus egestas pellentesque. Ut lacus tellus, maximus vel lectus at, placerat pretium mi. Maecenas dignissim tincidunt vestibulum. Sed consequat hendrerit nisl ut maximus. -

+ + - - -
-
-
-
-

Abstract

-
-

- Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ullamcorper tellus sed ante aliquam tempus. Etiam porttitor urna feugiat nibh elementum, et tempor dolor mattis. Donec accumsan enim augue, a vulputate nisi sodales sit amet. Proin bibendum ex eget mauris cursus euismod nec et nibh. Maecenas ac gravida ante, nec cursus dui. Vivamus purus nibh, placerat ac purus eget, sagittis vestibulum metus. Sed vestibulum bibendum lectus gravida commodo. Pellentesque auctor leo vitae sagittis suscipit. -

+
--> + + + +
+
+
+
+

Abstract

+
+

+ Multi-modal Large Language Models (MLLMs) are at the forefront of artificial intelligence research, aiming + to create models capable of understanding, learning, and generating multiple data types, including text, + images, and sound. Despite the potential, significant challenges persist, including the integration of + suitable vision encoders and LLMs, the scarcity of comprehensive multi-modal datasets, and the need for + efficient performance improvement. + + A performance gap currently exists between closed-source models, often developed by resource-rich tech + companies, and open-source models. However, the open-source community is making substantial strides, + driven by collaboration and resource availability. + + Our work with the Bumblebee model, an open-source MLLM, exemplifies this progress. By implementing token + shrinkage and developing an efficient projector called STSR (Scalable Token Shrinkage Resampler), + Bumblebee has surpassed the closed-source QwenVL Max on the MMBench-Test-CN with a score of 75.9, using + only open-source data and 14 billion LLM parameters. This surpasses the current open-source + state-of-the-art Yi-34B-VL by 5.9 points on MMBench-Test-CN, despite having fewer parameters. This + achievement underscores the potential of open-source models to compete with, and potentially surpass, + their closed-source counterparts, signaling a promising future for open-source multi-modal learning. +

+
-
-
- + + - -
-
+ + + + +
-
+ +
+
+
+
+
+
+ MY ALT TEXT +

+ Qualitative results by Bumblebee +

+
+
+
-
- - MY ALT TEXT -

- Third image description. -

-
-
- - MY ALT TEXT -

- Fourth image description. -

-
-
- -
- + - -
-
-
- -

Video Presentation

-
-
- -
- - + + +
--> + - -
-
-
-

Another Carousel

-
--> + - -
-
-
-

Poster

+ + +
--> + - +

BibTeX

-
BibTex Code Here
+
+        
+@article{Fagang,
+  title={Bumblebee: Advancing Beyond Closed-Source Multi-Modal Models through Token Shrinkage},
+  author={Fagang Jin, Chen Tong, Lin You},
+  year={2024},
+  primaryClass={cs.CV}
+}
+    
-
- + + + + + + + - - - + - + - - + \ No newline at end of file diff --git a/static/.DS_Store b/static/.DS_Store new file mode 100644 index 0000000..7aff111 Binary files /dev/null and b/static/.DS_Store differ diff --git a/static/images/board.jpg b/static/images/board.jpg new file mode 100644 index 0000000..6e041b8 Binary files /dev/null and b/static/images/board.jpg differ diff --git a/static/images/res.webp b/static/images/res.webp new file mode 100644 index 0000000..20d8972 Binary files /dev/null and b/static/images/res.webp differ