forked from vad/wiki-network
-
Notifications
You must be signed in to change notification settings - Fork 1
/
graph_analysis.py
executable file
·465 lines (366 loc) · 17.7 KB
/
graph_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#!/usr/bin/env python
## SYSTEM
import os
import sys
import numpy
import igraph as ig
import logging
## PROJECT
from sonet.tablr import Tablr
from sonet.timr import Timr
from sonet import mediawiki as mwlib, graph as sg
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
## GLOBAL VARIABLES
groups = {
'all': {},
'bot': {'bot': True},
'not_bot': {'bot_ne': True},
'sysop': {'sysop': True, 'bureaucrat_ne': True, 'steward_ne': True,
'founder_ne': True},
'bureaucrat': {'bureaucrat': True, 'steward_ne': True, 'founder_ne': True},
'steward': {'steward': True, 'founder_ne': True},
'founder': {'founder': True},
'su': {'sysop': True},
'normal_user': {'sysop_ne': True, 'bureaucrat_ne': True,
'steward_ne': True, 'founder_ne': True, 'bot_ne': True,
'anonymous_ne': True},
'blocked': {'blocked': True},
'not_blocked': {'blocked_ne': True},
'anonymous': {'anonymous': True},
'not_anonymous': {'anonymous_ne': True},
}
## FUNCTIONS
def top(l, nelem=5, accuracy=10):
#TODO: if l is a numpy array use numpy.array.sort() instead of sorted
import types
if not len(l):
return 'nan'
else:
if type(l[0]) in (types.IntType, numpy.int64, numpy.int32):
format = "%d"
else:
format = '%%.%df' % (accuracy,)
return ', '.join(format % e for e in sorted(l, reverse=True)[:nelem])
def create_option_parser():
from optparse import OptionParser, OptionGroup
from sonet.lib import SonetOption
op = OptionParser('%prog [options] graph', option_class=SonetOption)
time_group = OptionGroup(op, 'Time related options')
time_group.add_option('-S', '--start', action="store", dest='start',
type="yyyymmdd", default=None, metavar="YYYYMMDD",
help="Look for revisions starting from this date")
time_group.add_option('-E', '--end', action="store", dest='end',
type="yyyymmdd", default=None, metavar="YYYYMMDD",
help="Look for revisions until this date"
)
op.add_option_group(time_group)
op.add_option('--save-db', action="store_true", dest="as_table",
help="Save output on a DB")
op.add_option('--group', action="store_true", dest="group",
help="Analyze groups")
op.add_option('-d', '--details', action="store_true", dest="details",
help="Print details about this graph (# of vertexes and # of edges)")
op.add_option('-e', '--degree', action="store_true", dest="degree",
help="Print the mean vertex-vertex distance of the graph")
op.add_option('-r', '--density', action="store_true", dest="density",
help="Print the density of the groups (requires --groups)")
op.add_option('--reciprocity', action="store_true", dest="reciprocity",
help="Print the reciprocity of the groups (requires --groups)")
op.add_option('-t', '--transitivity', action="store_true",
dest="transitivity")
op.add_option('-i', '--distance', action="store_true", dest="distance")
op.add_option('-f', '--efficiency', action="store_true", dest="efficiency")
op.add_option('-s', '--summary', action="store_true", dest="summary")
op.add_option('-c', '--centrality', action="store", dest="centrality",
type="string", metavar="all|pagerank|betweenness|degree",
help="Compute the specified centrality measures")
op.add_option('-p', '--plot', action="store_true", dest="plot")
op.add_option('--histogram', action="store_true", dest="histogram")
op.add_option('-g', '--gnuplot', action="store_true", dest="gnuplot")
op.add_option('-w', '--power-law', action="store_true", dest="power_law")
op.add_option('-a', '--adjacency', action="store_true", dest="adjacency",
help="Write the adjacency matrix of the giant component to a file")
op.add_option('--users-role', action="store_true", dest="users_role",
help="Write a list users-role to a file")
return op
def main():
op = create_option_parser()
(options, args) = op.parse_args()
if len(args) != 1:
print "Insert one (and only one) file to process\n"
op.print_help()
sys.exit(2)
fn = args[0]
lang, date, type_ = mwlib.explode_dump_filename(fn)
g = sg.load(fn)
g.time_slice_subgraph(start=options.start, end=options.end)
g.invert_edge_attr('weight', 'length')
vn = len(g.g.vs) # number of vertexes
en = len(g.g.es) # number of edges
timr = Timr()
if options.as_table:
tablr = Tablr()
tablr.start(1024*32, lang)
if options.group or options.users_role or options.histogram:
for group_name, group_attr in groups.iteritems():
g.defineClass(group_name, group_attr)
print ' * %s : nodes number : %d' % (group_name,
len(g.classes[group_name]))
else:
g.defineClass('all', {})
print " * lang: %s" % (lang,)
print " * date: %s" % (date,)
if options.details:
with Timr("details"):
print " * nodes number: %d" % (vn,)
print " * edges number: %d" % (en,)
nodes_with_outdegree = len(g.g.vs.select(_outdegree_ge=1))
nodes_with_indegree = len(g.g.vs.select(_indegree_ge=1))
print " * nodes with out edges number: %d (%6f%%)" % (
nodes_with_outdegree, 100.*nodes_with_outdegree/vn)
print " * nodes with in edges number: %d (%6f%%)" % (
nodes_with_indegree, 100.*nodes_with_indegree/vn)
print " * max weights on edges : %s" % top(g.g.es['weight'])
#print " * diameter : %6f" % g.g.diameter(weights='length')
#print " * average weight : %6f" % numpy.average(g.g.es['weight'])
if options.density or options.reciprocity:
with Timr('density&reciprocity'):
for cls, vs in g.classes.iteritems():
if not len(vs) > 1:
continue
subgraph = vs.subgraph()
print " * %s : density : %.10f" % (cls, subgraph.density())
print " * %s : reciprocity : %.10f" % (cls,
subgraph.reciprocity())
if options.degree:
with Timr('degree'):
g.g.vs['indegree'] = g.g.degree(type=ig.IN)
g.g.vs['outdegree'] = g.g.degree(type=ig.OUT)
for cls, vs in g.classes.iteritems():
if not vs:
continue
ind = numpy.array(vs['indegree'])
outd = numpy.array(vs['outdegree'])
print " * %s : mean IN degree (no weights): %f" % (
cls, numpy.average(ind))
print " * %s : mean OUT degree (no weights): %f" % (
cls, numpy.average(outd))
print " * %s : max IN degrees (no weights): %s" % (cls,
top(ind))
print " * %s : max OUT degrees (no weights): %s" % (cls,
top(outd))
print " * %s : stddev IN degree (no weights): %f" % (
cls, numpy.sqrt(numpy.var(ind)))
print " * %s : stddev OUT degree (no weights): %f" % (
cls, numpy.sqrt(numpy.var(outd)))
if options.transitivity:
##print " * transitivity: %f" % (nx.transitivity(g), )
pass
if options.summary:
# don't use with --as-table
print " * summary: %s" % (g.g.summary(), )
if options.distance:
with Timr('split clusters'):
vc = g.g.clusters()
size_clusters = vc.sizes()
giant = vc.giant()
print " * length of 5 max clusters: %s" % top(size_clusters)
#print " * #node in 5 max clusters/#all nodes: %s" % top(
# [1.*cluster_len/vn for cluster_len in size_clusters])
if options.distance:
with Timr('distance'):
gg = sg.Graph(giant)
print " * average distance in the giant component: %f" % \
gg.averageDistance(weight='length')
print " * average hops in the giant component: %f" % \
gg.averageDistance()
#print "Average distance 2: %f" % giant.average_path_length(True,
# False)
if options.efficiency:
with Timr('efficiency'):
print " * efficiency: %f" % g.efficiency(weight='length')
##TODO: compute for centrality only if "all" or "degree"
if (options.plot or options.histogram or options.power_law or
options.centrality):
with Timr('set weighted indegree'):
g.set_weighted_degree()
if options.centrality:
timr.start('centrality')
centralities = options.centrality.split(',')
if 'all' in centralities:
centralities = 'betweenness,pagerank,degree'.split(',')
if set(centralities).difference(
'betweenness,pagerank,degree'.split(',')):
logging.error('Unknown centrality')
sys.exit(0)
if "betweenness" in centralities:
print >> sys.stderr, "betweenness"
g.g.vs['bw'] = g.g.betweenness(weights='length', directed = True)
#g.g.vs['ev'] = g.g.evcent(weights='weight') # eigenvector centrality
if 'pagerank' in centralities:
print >> sys.stderr, "pagerank"
g.g.vs['pr'] = g.g.pagerank(weights='weight') # pagerank
if 'degree' in centralities:
print >> sys.stderr, "outdegree"
g.set_weighted_degree(type=ig.OUT)
#total_weights = sum(g.g.es['weight'])
max_edges = vn*(vn-1)
for cls, vs in g.classes.iteritems():
if not vs:
continue
if "betweenness" in centralities:
norm_betweenness = numpy.array(g.classes[cls]['bw'])/max_edges
print " * %s : average betweenness : %.10f" % (
cls, numpy.average(norm_betweenness))
print " * %s : stddev betweenness : %.10f" % (
cls, numpy.sqrt(numpy.var(norm_betweenness)))
print " * %s : max betweenness: %s" % (
cls, top(numpy.array(g.classes[cls]['bw'])/max_edges))
#print " * Average eigenvector centrality : %6f" % numpy.average(
# g.vs['ev'])
if 'pagerank' in centralities:
print " * %s : average pagerank : %.10f" % (
cls, numpy.average(g.classes[cls]['pr']))
print " * %s : stddev pagerank : %.10f" % (
cls, numpy.sqrt(numpy.var(g.classes[cls]['pr'])))
print " * %s : max pagerank: %s" % (
cls, top(g.classes[cls]['pr']))
if 'degree' in centralities:
wi = g.classes[cls]['weighted_indegree']
print " * %s : average IN degree centrality (weighted): %.10f" % (
cls, numpy.average(wi))
print " * %s : stddev IN degree centrality (weighted): %.10f" % (
cls, numpy.sqrt(numpy.var(wi)))
print " * %s : max IN degrees centrality (weighted): %s" % (
cls, top(wi))
del wi
wo = g.classes[cls]['weighted_outdegree']
print " * %s : average OUT degree centrality (weighted) : %.10f" %\
(cls, numpy.average(wo))
print " * %s : stddev OUT degree centrality (weighted) : %.10f" % \
(cls, numpy.sqrt(numpy.var(wo)))
print " * %s : max OUT degrees centrality (weighted): %s" % (
cls, top(wo))
del wo
timr.stop('centrality')
if options.power_law:
with Timr('power law'):
for cls, vs in g.classes.iteritems():
if not vs:
continue
indegrees = vs['weighted_indegree']
try:
alpha_exp = ig.statistics.power_law_fit(indegrees, xmin=6)
print " * %s : alpha exp IN degree distribution : %10f " %\
(cls, alpha_exp)
except ValueError:
print >> sys.stderr,\
" * %s : alpha exp IN degree distribution : ERROR" %\
(cls,)
if options.histogram:
list_with_index = lambda degrees, idx: [(degree, idx) for degree
in degrees if degree]
all_list = []
nogrp_indegrees = g.g.vs.select(sysop_ne=True, bureaucrat_ne=True,
steward_ne=True, founder_ne=True,
bot_ne=True)['weighted_indegree']
all_list += list_with_index(nogrp_indegrees, 1)
sysops_indegrees = g.classes['sysop']['weighted_indegree']
all_list += list_with_index(sysops_indegrees, 2)
burs_indegrees = g.classes['bureaucrat']['weighted_indegree']
all_list += list_with_index(burs_indegrees, 3)
stewards_indegrees = g.classes['steward']['weighted_indegree']
all_list += list_with_index(stewards_indegrees, 4)
founders_indegrees = g.classes['founder']['weighted_indegree']
all_list += list_with_index(founders_indegrees, 5)
bots_indegrees = g.classes['bot']['weighted_indegree']
all_list += list_with_index(bots_indegrees, 6)
if options.gnuplot:
f = open('hist.dat', 'w')
else:
f = open('%swiki-%s-hist.dat' % (lang, date), 'w')
all_list.sort(reverse=True)
for indegree, grp in all_list:
for _ in range(grp - 1):
print >> f, 0,
print >> f, indegree,
for _ in range(grp, 6):
print >> f, 0,
print >> f, ""
f.close()
if options.gnuplot:
from popen2 import Popen3
process = Popen3('gnuplot hist.gnuplot')
process.wait()
os.rename('hist.png', '%swiki-%s-hist.png' % (lang, date))
os.rename('hist.dat', '%swiki-%s-hist.dat' % (lang, date))
if options.plot:
## TODO: evaluate if this can be done with
## http://bazaar.launchpad.net/~igraph/igraph/0.6-main/revision/2018
with Timr('plot'):
import math
## filter:
#print len(g.g.vs), len(g.g.es)
#g.set_weighted_degree(type=ig.OUT)
#g.g = g.g.subgraph(g.g.vs.select(weighted_indegree_ge=10,
# weighted_outdegree_ge=1))
#g.g.write_graphml('itwiki-20100729-stub-meta-history_in10_out1.graphml')
#print len(g.g.vs), len(g.g.es)
bots = g.g.vs.select(bot=True)
bots['color'] = ('purple',)*len(bots)
logging.debug('bots: ok')
anonyms = g.g.vs.select(anonymous=True)
anonyms['color'] = ('blue',)*len(anonyms)
sysops = g.g.vs.select(sysop=True)
sysops['color'] = ('yellow',)*len(sysops)
bur_sysops = g.g.vs.select(bureaucrat=True, sysop=True)
bur_sysops['color'] = ('orange',)*len(bur_sysops)
g.g.vs['size'] = [math.sqrt(v['weighted_indegree']+1)*10 for v
in g.g.vs]
logging.debug('plot: begin')
ig.plot(g.g, target=lang+"_general.png", bbox=(0, 0, 8000, 8000),
edge_color='grey', layout='drl')
logging.debug('plot: end')
weights = g.g.es['weight']
max_weight = max(weights)
g.g.es['color'] = [(255.*e['weight']/max_weight, 0., 0.) for e
in g.g.es]
g.g.es['width'] = weights
ig.plot(g.g, target=lang+"_weighted_edges.png", bbox=(0, 0, 4000,
2400),
layout='fr', vertex_label=' ')
if options.as_table:
tablr.stop()
#tablr.printHeader()
#tablr.printData()
tablr.saveInDjangoModel()
if options.adjacency:
giant = g.g.clusters().giant()
#destAdj = "%s/%swiki-%s-adj.csv" % (os.path.split(fn)[0], lang, date)
destAdj = "%swiki-%s-adj.csv" % (lang, date)
#destRec = "%s/%swiki-%s-rec.csv" % (os.path.split(fn)[0], lang, date)
destRec = "%swiki-%s-rec.csv" % (lang, date)
sg.Graph(giant).writeAdjacencyMatrix(destAdj, 'username')
sg.Graph(giant).writeReciprocityMatrix('username', destRec)
if options.users_role:
l = g.get_user_class('username', ('anonymous', 'bot', 'bureaucrat',
'sysop'))
#destUR = "%s/%swiki-%s-ur.csv" % (os.path.split(fn)[0], lang, date)
destUR = "%swiki-%s-ur.csv" % (lang, date)
with open(destUR, 'w') as f:
for username, role in sorted(l):
print >> f, "%s,%s" % (username, role)
from random import shuffle
#destCls = "%s/%swiki-%s-%%s.csv" % (os.path.split(fn)[0], lang, date)
destCls = "%swiki-%s-%%s.csv" % (lang, date)
for cls in ('anonymous', 'bot', 'bureaucrat', 'sysop', 'normal_user'):
users = g.classes[cls]['username']
shuffle(users)
with open(destCls % cls, 'w') as f:
for username in users:
print >> f, \
("%s,http://vec.wikipedia.org/w/index.php?title="+\
"Discussion_utente:%s&action=history&offset="+\
"20100000000001") % (username, username)
if __name__ == '__main__':
main()