-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdaptiveLinearNeuron.py
213 lines (175 loc) · 6.6 KB
/
AdaptiveLinearNeuron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# 梯度相反的方向是学习速率最快的方向
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from matplotlib.colors import ListedColormap
class AdaLinNeuGD(object):
def __init__(self, eta=0.01, n_iter=50):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
'''
Fit training data
:param X: shape = [n_samples, n_features]
:param y: shape = n_sample
:return: self: Object
'''
self.w_ = np.zeros(1 + X.shape[1]) # Initial weights
self.cost_ = []
for i in range(self.n_iter):
output = self.net_input(X)
errors = y - output
self.w_[1:] += self.eta * X.T.dot(errors) # Update weights
self.w_[0] += self.eta * errors.sum()
cost = (errors ** 2).sum() / 2.0 # Check whether convergence
self.cost_.append(cost)
return self
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
return self.net_input(X)
def predict(self, X):
return np.where(self.activation(X) >= 0.0, 1, 0)
def plot_decision_region(X, y, classifier, resolution=0.02):
# Set up marker generator and color map
markers = ['s', 'x', 'o', '^', 'v']
colors = ['red', 'blue', 'lightgreen', 'gray', 'cyan']
cmap = ListedColormap(colors[:len(np.unique(y))])
# Plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
# Plot class samples
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl)
def plot_adjust_parameters_curve(X, y):
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
ada1 = AdaLinNeuGD(n_iter=10, eta=0.01).fit(X, y)
ax[0].plot(range(1, len(ada1.cost_)+1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Log(Sum-squared-error')
ax[0].set_title('Adaline-Learning rate 0.01')
ada2 = AdaLinNeuGD(n_iter=10, eta=0.0001).fit(X, y)
ax[1].plot(range(1, len(ada2.cost_)+1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline-Learning rate 0.0001')
plt.show()
return
# adaptive linear neuron stochastic gradient descent
class AdalineSGD(object):
def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
self.eta = eta # 学习速率
self.n_iter = n_iter
self.w_initialized = False
self.shuffle = shuffle
if random_state:
np.random.seed(random_state)
def fit(self, X, y):
self._initialize_weights(X.shape[1])
self.cost_ = []
for i in range(self.n_iter):
if self.shuffle:
X, y = self._shuffle(X, y)
cost = []
for xi, target in zip(X, y):
cost.append(self._update_weights(xi, target))
avg_cost = np.sum(cost) / len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self, X, y):
if not self.w_initialized:
self._initialize_weights(X.shape[1])
if y.ravel().shape[0] > 1:
for xi, target in zip(X, y):
self._update_weights(xi, target)
else:
self._update_weights(X, y)
return self
def _shuffle(self, X, y):
'''
Shuffle training data
'''
r = np.random.permutation(len(y))
return X[r], y[r]
def _initialize_weights(self, m):
'''
Initialize weights to zeros
'''
self.w_ = np.zeros(1 + m)
self.w_initialized = True
def _update_weights(self, xi, target):
'''
Apply Adaline learning rule to update the weights
'''
output = self.net_input(xi)
error = target - output
self.w_[1:] += self.eta * xi.dot(error)
self.w_[0] = self.eta * error
cost = 0.5 * error ** 2
return cost
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
return self.net_input(X)
def predict(self, X):
return np.where(self.activation(X) >= 0.0, 1, 0)
data = load_iris()
df = pd.DataFrame(np.c_[data['data'], data['target']])
y = df.iloc[0:100, 4].values
X = df.iloc[:100, [0, 2]].values
plt.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor')
plt.xlabel('petal length')
plt.ylabel('sepal length')
plt.legend(loc='upper left')
plt.show()
eta1, eta2 = 0.01, 0.0001
ada1 = AdaLinNeuGD(n_iter=10, eta=eta1).fit(X, y)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
ax[0].plot(range(1, len(ada1.cost_)+1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-squared-error)')
ax[0].set_title('Adaline-Learning rate {}'.format(eta1))
ada2 = AdaLinNeuGD(n_iter=10, eta=eta2).fit(X, y)
ax[1].plot(range(1, len(ada1.cost_)+1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline-Learning rate {}'.format(eta2))
plt.show()
# Feature Scaling
X_std = np.copy(X)
X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()
ada = AdaLinNeuGD(n_iter=15, eta=0.01)
ada.fit(X_std, y)
plot_decision_region(X_std, y, classifier=ada)
plt.title('Adaline - Gradient Descent`')
plt.xlabel('sepal length [Standardized]')
plt.ylabel('petal length [Standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_)+1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Sum-squared-error')
plt.show()
sgd_ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
sgd_ada.fit(X_std, y)
plot_decision_region(X_std, y, classifier=sgd_ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('Sepal length [standardized]')
plt.ylabel('petal length [Standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(sgd_ada.cost_)+1), sgd_ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')
plt.show()