-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
62 lines (52 loc) · 2.32 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from PIL import Image, ImageFilter
import tensorflow as tf
def imageprepare(argv):
"""
This function returns the pixel values.
The input is a png file location.
"""
im = Image.open(argv).convert('L')
width = float(im.size[0])
height = float(im.size[1])
newImage = Image.new('L', (28, 28), 255) # creates white canvas of 28x28 pixels
if width > height: # check which dimension is bigger
# width is bigger. Width becomes 20 pixels.
nheight = int(round((20.0 / width * height), 0)) # resize height according to ratio width
if nheight == 0: # rate case but minimum is 1 pixel
nheight = 1
# resize and sharpen
img = im.resize((20, height), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wtop = int(round((28 - height) / 2, 0)) # caculate horizontal position
newImage.paste(img, (4, wtop)) # paste resized image on white canvas
else:
# Height is bigger. Height becomes 20 pixels.
nwidth = int(round((20.0 / height * width), 0)) # resize width according to ratio height
if nwidth == 0: # rare case but minimun is 1 pixel
nwidth = 1
# resize and sharpen
img = im.resize((nwidth, 20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wleft = int(round((28 - nwidth) / 2, 0)) # caculate vertical position
newImage.paste(img, (wleft, 4)) # paste resized image on white canvas
# newImage.save("sample.png")
tv = list(newImage.getdata()) # get pixel values
# normalize pixels to 0 and 1. 0 is pure white, 1 is pure blace.
tva = [(255 - x) * 1.0 / 255.0 for x in tv]
return tva
def predictint(imvalue):
"""
This function returns the predicted integer.
The input is the pixel values from the imageprepare() function
"""
# Define the model (same as when creating the model file)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
init_op = tf.initialize_all_variables()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init_op)
saver.restore(sess, "./model.ckpt")
# print ("Model restored.")
prediction = tf.argmax(y, 1)
return prediction.eval(feed_dict={x: [imvalue]}, session=sess)