Skip to content

Latest commit

 

History

History
75 lines (53 loc) · 2.05 KB

README.md

File metadata and controls

75 lines (53 loc) · 2.05 KB

HuggingFaceTokenizers.jl

Build Status Coverage

Rudimentary Julia bindings for 🤗 Tokenizers, providing fast and easy-to-use tokenization through Python interop.

Installation

From the Julia REPL, enter Pkg mode with ] and add the package using the URL:

add HuggingFaceTokenizers

Usage

Loading a Tokenizer

You can load a tokenizer either from a pre-trained model or from a saved file:

using HuggingFaceTokenizers

# Load a pre-trained tokenizer
tokenizer = from_pretrained(Tokenizer, "bert-base-uncased")

# Alternatively specify revision and auth token
tokenizer = from_pretrained(Tokenizer, "bert-base-uncased", "main", nothing)

# Or load from a file
tokenizer = from_file(Tokenizer, "path/to/tokenizer.json")

Basic Operations

Single Text Processing

# Encode a single text
text = "Hello, how are you?"
result = encode(tokenizer, text)
println("Tokens: ", result.tokens)
println("IDs: ", result.ids)

# Decode back to text
decoded_text = decode(tokenizer, result.ids)
println("Decoded: ", decoded_text)

Batch Processing

# Encode multiple texts at once
texts = ["Hello, how are you?", "I'm doing great!"]
batch_results = encode_batch(tokenizer, texts)

# Each result contains tokens and ids
for (i, result) in enumerate(batch_results)
    println("Text $i:")
    println("  Tokens: ", result.tokens)
    println("  IDs: ", result.ids)
end

# Decode multiple sequences at once
ids_batch = [result.ids for result in batch_results]
decoded_texts = decode_batch(tokenizer, ids_batch)

Saving a Tokenizer

# Save the tokenizer to a file
save(tokenizer, "path/to/save/tokenizer.json")