From d2bab85e69cde2430bbb79a5844e38086e076dcc Mon Sep 17 00:00:00 2001 From: Austin Raney Date: Thu, 2 May 2024 12:18:03 -0400 Subject: [PATCH] refactor: use ctx manager; move code to . --- .../src/ngen/cal/_optimizers/grey_wolf.py | 36 ++++++++++++++----- 1 file changed, 28 insertions(+), 8 deletions(-) diff --git a/python/ngen_cal/src/ngen/cal/_optimizers/grey_wolf.py b/python/ngen_cal/src/ngen/cal/_optimizers/grey_wolf.py index cef0cea8..e5538c82 100644 --- a/python/ngen_cal/src/ngen/cal/_optimizers/grey_wolf.py +++ b/python/ngen_cal/src/ngen/cal/_optimizers/grey_wolf.py @@ -118,7 +118,12 @@ def __init__( self.name = __name__ def optimize( - self, objective_func, iters, n_processes=None, verbose=True, **kwargs + self, + objective_func, + iters: int, + n_processes: Optional[int] = None, + verbose: bool = True, + **kwargs, ): """Optimize the swarm for a number of iterations @@ -131,7 +136,7 @@ def optimize( objective function to be evaluated iters : int number of iterations - n_processes : int + n_processes : int, optional number of processes to use for parallel particle evaluation (default: None = no parallelization) verbose : bool enable or disable the logs and progress bar (default: True = enable logs) @@ -143,7 +148,23 @@ def optimize( tuple the global best cost and the global best position. """ + if n_processes is None: + return self._optimize(objective_func, iters, verbose, pool=None) + else: + with mp.Pool(n_processes) as pool: + return self._optimize(objective_func, iters, verbose, pool=pool) + def _optimize( + self, + objective_func, + iters: int, + verbose: bool = True, + pool: Optional[mp.Pool] = None, + **kwargs, + ): + """ + `pool` lifecycle is managed by `optimize` method. DO NOT CLOSE IT HERE. + """ # Apply verbosity if self.start_iter>0: verbose = False @@ -158,9 +179,7 @@ def optimize( lvl=log_level, ) - # Setup Pool of processes for parallel evaluation - pool = None if n_processes is None else mp.Pool(n_processes) - + # TODO: @hellkite500, ftol_history is unused. should it be? or can we remove it? ftol_history = deque(maxlen=self.ftol_iter) # Compute cost of initial swarm @@ -204,6 +223,8 @@ def optimize( X2 = beta - A2 * Dbeta X3 = delta - A3 * Ddelta self.swarm.position = (X1 + X2 + X3) / 3 + # TODO: @hellkite500, is this right? + assert self.bounds is not None self.swarm.position = np.clip(self.swarm.position, self.bounds[0], self.bounds[1]) # Compute current cost and update local best self.swarm.current_cost = compute_objective_function(self.swarm, objective_func, pool=pool, **kwargs) @@ -217,13 +238,12 @@ def optimize( self.update_history(i+2) # Obtain the final best_cost and the final best_position + # TODO: @hellkite500, `best_cost` should be `float` here... so no copy + # method. final_best_cost = self.swarm.best_cost.copy() final_best_pos = self.swarm.best_pos.copy() # Write report in log and return final cost and position self.rep.log("Optimization finished | best cost: {}, best pos: {}".format(final_best_cost, final_best_pos), lvl=log_level) - # Close Pool of Processes - if n_processes is not None: - pool.close() return (final_best_cost, final_best_pos) def _hist_to_csv(self, i: int, name: str, index: List, key: str, label: Optional[str]=None) -> None: