InfrastructureSystems.DataFormatError
— TypeThrown upon detection of user data that is not supported.
diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json
index d86348e46..2bef0a220 100644
--- a/dev/.documenter-siteinfo.json
+++ b/dev/.documenter-siteinfo.json
@@ -1 +1 @@
-{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-08-02T03:26:48","documenter_version":"1.5.0"}}
\ No newline at end of file
+{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-08-02T03:26:56","documenter_version":"1.5.0"}}
\ No newline at end of file
diff --git a/dev/InfrastructureSystems/index.html b/dev/InfrastructureSystems/index.html
index 0162cee99..e58216d05 100644
--- a/dev/InfrastructureSystems/index.html
+++ b/dev/InfrastructureSystems/index.html
@@ -4,19 +4,19 @@
type = CompressionTypes.DEFLATE, # BLOSC is also supported
level = 3,
shuffle = true,
-)source Thrown upon detection of user data that is not supported. Thrown upon detection of user data that is not supported. A deterministic forecast for a particular data field in a Component. Arguments A deterministic forecast for a particular data field in a Component. Arguments Construct Deterministic from a Dict of TimeArrays. Arguments Construct Deterministic from a Dict of TimeArrays. Arguments Construct Deterministic from a CSV file. The first column must be a timestamp in DateTime format and the columns the values in the forecast window. Arguments Construct Deterministic from a CSV file. The first column must be a timestamp in DateTime format and the columns the values in the forecast window. Arguments Construct Deterministic from RawTimeSeries. Construct Deterministic from RawTimeSeries. Construct a new Deterministic from an existing instance and a subset of data. Construct a new Deterministic from an existing instance and a subset of data. A deterministic forecast for a particular data field in a Component. Arguments A deterministic forecast for a particular data field in a Component. Arguments A deterministic forecast that wraps a Can be used as a perfect forecast based on historical data when real forecast data is unavailable. Arguments Base type for auxillary structs. These should not be stored in a system. Specializes the behavior of SimpleLogger by adding timestamps and process and thread IDs. Wrapper around Iterators.Flatten to provide total length. Supertype for forecast time series Current concrete subtypes are: Subtypes of Forecast must implement: Construct ForecastCache to automatically control caching of forecast data. Maintains some count of forecast windows in memory based on Call Base.iterate or Arguments Attribute to store Geographic Information about the system components Stores all time series data in an HDF5 file. The file used is assumed to be temporary and will be automatically deleted when there are no more references to the storage object. A deterministic forecast that wraps a Can be used as a perfect forecast based on historical data when real forecast data is unavailable. Arguments Base type for auxillary structs. These should not be stored in a system. Specializes the behavior of SimpleLogger by adding timestamps and process and thread IDs. Wrapper around Iterators.Flatten to provide total length. Supertype for forecast time series Current concrete subtypes are: Subtypes of Forecast must implement: Construct ForecastCache to automatically control caching of forecast data. Maintains some count of forecast windows in memory based on Call Base.iterate or Arguments Attribute to store Geographic Information about the system components Stores all time series data in an HDF5 file. The file used is assumed to be temporary and will be automatically deleted when there are no more references to the storage object. Constructs Hdf5TimeSeriesStorage. Arguments Constructs Hdf5TimeSeriesStorage. Arguments Constructs Hdf5TimeSeriesStorage by creating a temp file. Stores all time series data in memory. Constructs Hdf5TimeSeriesStorage by creating a temp file. Stores all time series data in memory. Constructs InMemoryTimeSeriesStorage from an instance of Hdf5TimeSeriesStorage. Base type for structs that are stored in a system. Required interface functions for subtypes: Subtypes may contain time series. Internal storage common to InfrastructureSystems types. Constructs InMemoryTimeSeriesStorage from an instance of Hdf5TimeSeriesStorage. Base type for structs that are stored in a system. Required interface functions for subtypes: Subtypes may contain time series. Internal storage common to InfrastructureSystems types. Creates InfrastructureSystemsInternal with an existing UUID. Creates InfrastructureSystemsInternal with an existing UUID. Creates InfrastructureSystemsInternal with a new UUID. Base type for any struct in the Sienna packages. All structs must implement a kwarg-only constructor to allow deserializing from a Dict. LazyDictFromIterator creates a dictionary from an iterator, but only increments the iterator and adds items to the dictionary as it needs them. In the worst case it is identical to creating a dictionary by iterating over the entire list. Each V should have a K member. Arguments Structure to represent the underlying data of linear functions. Principally used for the representation of cost functions Arguments Contains information describing a log event. Creates InfrastructureSystemsInternal with a new UUID. Base type for any struct in the Sienna packages. All structs must implement a kwarg-only constructor to allow deserializing from a Dict. LazyDictFromIterator creates a dictionary from an iterator, but only increments the iterator and adds items to the dictionary as it needs them. In the worst case it is identical to creating a dictionary by iterating over the entire list. Each V should have a K member. Arguments Structure to represent the underlying data of linear functions. Principally used for the representation of cost functions Arguments Contains information describing a log event. Tracks counts of all log events by level. Examples Redirects log events to multiple loggers. The primary use case is to allow logging to both a file and the console. Secondarily, it can track the counts of all log messages. Example Redirects log events to multiple loggers. The primary use case is to allow logging to both a file and the console. Secondarily, it can track the counts of all log messages. Example Creates a MultiLogger with no event tracking. Example Indicate that the feature at hand happens to not be implemented for the given data even though it could be. If it is a category mistake to imagine this feature defined on that data, use another exception, like Structure to represent piecewise linear data as a series of points: two points define one segment, three points define two segments, etc. The curve starts at the first point given, not the origin. Principally used for the representation of cost functions where the points store quantities (x, y), such as (MW, /h). Arguments Structure to represent a step function as a series of endpoint x-coordinates and segment y-coordinates: two x-coordinates and one y-coordinate defines a single segment, three x-coordinates and two y-coordinates define two segments, etc. This can be useful to represent the derivative of a PiecewiseLinearData, where the y-coordinates of this step function represent the slopes of that piecewise linear function, so there is also an optional field Arguments Creates a MultiLogger with no event tracking. Example Indicate that the feature at hand happens to not be implemented for the given data even though it could be. If it is a category mistake to imagine this feature defined on that data, use another exception, like Structure to represent piecewise linear data as a series of points: two points define one segment, three points define two segments, etc. The curve starts at the first point given, not the origin. Principally used for the representation of cost functions where the points store quantities (x, y), such as (MW, /h). Arguments Structure to represent a step function as a series of endpoint x-coordinates and segment y-coordinates: two x-coordinates and one y-coordinate defines a single segment, three x-coordinates and two y-coordinates define two segments, etc. This can be useful to represent the derivative of a PiecewiseLinearData, where the y-coordinates of this step function represent the slopes of that piecewise linear function, so there is also an optional field Arguments A Probabilistic forecast for a particular data field in a Component. Arguments A Probabilistic forecast for a particular data field in a Component. Arguments Construct Probabilistic from a SortedDict of Arrays. Arguments Construct Probabilistic from a SortedDict of Arrays. Arguments Construct Probabilistic from a Dict of TimeArrays. Arguments Construct Probabilistic from a Dict of TimeArrays. Arguments Construct Deterministic from RawTimeSeries. Construct Deterministic from RawTimeSeries. Construct a Probabilistic that shares the data from an existing instance. This is useful in cases where you want a component to use the same time series data for two different attributes. Construct a Probabilistic that shares the data from an existing instance. This is useful in cases where you want a component to use the same time series data for two different attributes. A Probabilistic forecast for a particular data field in a Component. Arguments Structure to represent the underlying data of quadratic functions. Principally used for the representation of cost functions Arguments A Probabilistic forecast for a particular data field in a Component. Arguments Structure to represent the underlying data of quadratic functions. Principally used for the representation of cost functions Arguments Losslessly convert Wraps the data read from the text files with time series Records user-defined events in JSON format. Losslessly convert Wraps the data read from the text files with time series Records user-defined events in JSON format. Construct a Recorder. Arguments To implement a sub-type of this you need to implement the methods below. Construct a Recorder. Arguments To implement a sub-type of this you need to implement the methods below. A Discrete Scenario Based time series for a particular data field in a Component. Arguments A Discrete Scenario Based time series for a particular data field in a Component. Arguments Construct Scenarios from a SortedDict of Arrays. Arguments Construct Scenarios from a SortedDict of Arrays. Arguments Construct Scenarios from a Dict of TimeArrays. Arguments Construct Scenarios from a Dict of TimeArrays. Arguments Construct Scenarios that shares the data from an existing instance. This is useful in cases where you want a component to use the same time series data for two different attributes. Construct Scenarios that shares the data from an existing instance. This is useful in cases where you want a component to use the same time series data for two different attributes. A Discrete Scenario Based time series for a particular data field in a Component. Arguments A Discrete Scenario Based time series for a particular data field in a Component. Arguments A single column of time series data for a particular data field in a Component. In contrast with a forecast, this can represent one continual time series, such as a series of historical measurements or realizations or a single scenario (e.g. a weather year or different input assumptions). Arguments A single column of time series data for a particular data field in a Component. In contrast with a forecast, this can represent one continual time series, such as a series of historical measurements or realizations or a single scenario (e.g. a weather year or different input assumptions). Arguments Construct SingleTimeSeries from a CSV file. The file must have a column that is the name of the component. Arguments Construct SingleTimeSeries from a CSV file. The file must have a column that is the name of the component. Arguments Construct SingleTimeSeries from a TimeArray or DataFrame. Arguments Construct SingleTimeSeries from a TimeArray or DataFrame. Arguments Construct SingleTimeSeries that shares the data from an existing instance. This is useful in cases where you want a component to use the same time series data for two different attribtues. Construct SingleTimeSeries that shares the data from an existing instance. This is useful in cases where you want a component to use the same time series data for two different attribtues. Creates a new SingleTimeSeries from an existing instance and a subset of data. Creates a new SingleTimeSeries from an existing instance and a subset of data. Construct SingleTimeSeries after constructing a TimeArray from Construct SingleTimeSeries after constructing a TimeArray from A TimeSeries Data object in contigous form. Arguments Construct StaticTimeSeriesCache to automatically control caching of time series data. Maintains rows of data in memory based on Call Base.iterate or Arguments A TimeSeries Data object in contigous form. Arguments Construct StaticTimeSeriesCache to automatically control caching of time series data. Maintains rows of data in memory based on Call Base.iterate or Arguments Construct a StructDefinition for code auto-generation purposes. Arguments Construct a StructDefinition for code auto-generation purposes. Arguments Construct a StructField for code auto-generation purposes. Arguments Base type for structs that store supplemental attributes Required interface functions for subtypes: Optional interface functions: Subtypes may contain time series. Which requires All subtypes must include an instance of ComponentUUIDs in order to track components attached to each attribute. Construct a StructField for code auto-generation purposes. Arguments Base type for structs that store supplemental attributes Required interface functions for subtypes: Optional interface functions: Subtypes may contain time series. Which requires All subtypes must include an instance of ComponentUUIDs in order to track components attached to each attribute. Construct a new SupplementalAttributeAssociations with an in-memory database. Construct a new SupplementalAttributeAssociations with an in-memory database. Container for system components and time series data Container for system components and time series data Construct SystemData to store components and time series data. Arguments Defines an association between a time series owner (component or supplemental attribute) and the time series metadata. Examples Provides counts of time series including attachments to components and supplemental attributes. Abstract type for time series stored in the system. Components store references to these through TimeSeriesMetadata values so that data can reside on storage media instead of memory. Describes how to construct time_series from raw time series data files. Abstract type for time_series that are stored in a system. Users never create them or get access to them. Stores references to TimeSeriesData. Construct SystemData to store components and time series data. Arguments Defines an association between a time series owner (component or supplemental attribute) and the time series metadata. Examples Provides counts of time series including attachments to components and supplemental attributes. Abstract type for time series stored in the system. Components store references to these through TimeSeriesMetadata values so that data can reside on storage media instead of memory. Describes how to construct time_series from raw time series data files. Abstract type for time_series that are stored in a system. Users never create them or get access to them. Stores references to TimeSeriesData. Load a TimeSeriesMetadataStore from a saved database into an in-memory database. Load a TimeSeriesMetadataStore from a saved database into an in-memory database. Construct a new TimeSeriesMetadataStore with an in-memory database. Abstract type for time series storage implementations. All subtypes must implement: Ensures that any file streams are flushed and closed. Construct a new TimeSeriesMetadataStore with an in-memory database. Abstract type for time series storage implementations. All subtypes must implement: Ensures that any file streams are flushed and closed. Losslessly convert Flush any file streams. Losslessly convert Flush any file streams. Returns the item mapped to key. If the key is already stored then it will be returned with a dictionary lookup. If it has not been stored then iterate over the list until it is found. Returns nothing if key is not found. Returns the item mapped to key. If the key is already stored then it will be returned with a dictionary lookup. If it has not been stored then iterate over the list until it is found. Returns nothing if key is not found. Get a Get a Get a Get a Check that all existing SingleTimeSeries can be converted to DeterministicSingleTimeSeries with the given horizon and interval. Throw ConflictingInputsError if any time series cannot be converted. Return a Vector of NamedTuple of component, time series metadata, and forecast parameters for all matches. Check that all existing SingleTimeSeries can be converted to DeterministicSingleTimeSeries with the given horizon and interval. Throw ConflictingInputsError if any time series cannot be converted. Return a Vector of NamedTuple of component, time series metadata, and forecast parameters for all matches. Recursively builds a vector of subtypes. Recursively builds a vector of subtypes. Checks that the component exists in data and is the same object. Checks that the component exists in data and is the same object. Add a supplemental attribute association to the associations. The caller must check for duplicates. Add a supplemental attribute association to the associations. The caller must check for duplicates. Add a component. Throws ArgumentError if the component's name is already stored for its concrete type. Throws InvalidRange if any of the component's field values are outside of defined valid range. Add a component. Throws ArgumentError if the component's name is already stored for its concrete type. Throws InvalidRange if any of the component's field values are outside of defined valid range. Add a component to a subsystem. Add a component to a subsystem. Add metadata to the store. The caller must check if there are duplicates. Add type information to the dictionary that can be used to deserialize the value. Add metadata to the store. The caller must check if there are duplicates. Add type information to the dictionary that can be used to deserialize the value. Add a new subsystem to the system. Add a new subsystem to the system. Add the same time series data to multiple components. Arguments This is significantly more efficent than calling Throws ArgumentError if a component is not stored in the system. Add the same time series data to multiple components. Arguments This is significantly more efficent than calling Throws ArgumentError if a component is not stored in the system. Add time series data to a component or supplemental attribute. Arguments Throws ArgumentError if the owner is not stored in the system. Add time series data to a component or supplemental attribute. Arguments Throws ArgumentError if the owner is not stored in the system. Adds time series data from a metadata file or metadata descriptors. Arguments Adds time series data from a metadata file or metadata descriptors. Arguments Adds time_series from a metadata file or metadata descriptors. Arguments Adds time_series from a metadata file or metadata descriptors. Arguments Return an instance of ForecastParameters for the given inputs. Throws ConflictingInputsError if horizon and interval are incompatible with the metadata. Return an instance of ForecastParameters for the given inputs. Throws ConflictingInputsError if horizon and interval are incompatible with the metadata. Assign a new UUID. Assign a new UUID. Backup the database to a file on the temporary filesystem and return that filename. Backup the database to a file on the temporary filesystem and return that filename. Throw InvalidValue if the SingleTimeSeries arrays have different initial times or lengths. Return the initial timestamp and length as a tuple. Throw InvalidValue if the SingleTimeSeries arrays have different initial times or lengths. Return the initial timestamp and length as a tuple. Removes all components from the system. Removes all components from the system. Clear any value stored in ext. Clear any value stored in ext. Clear all time series metadata from the store. Clear all time series metadata from the store. Removes all supplemental_attributes from the system. Ignores whether attributes are attached to components. Removes all supplemental_attributes from the system. Ignores whether attributes are attached to components. Remove all supplemental attributes. For Recursively compares struct values. Prints all mismatched values to stdout. Arguments Return the SHA 256 hash of a file. Remove all supplemental attributes. For Recursively compares struct values. Prints all mismatched values to stdout. Arguments Return the SHA 256 hash of a file. Creates console and file loggers per caller specification and returns a MultiLogger. Suppress noisy events by specifying per-event values of Note: Use of log message suppression and the LogEventTracker are not thread-safe. Please contact the package developers if you need this functionality. Note: If logging to a file users must call Base.close() on the returned MultiLogger to ensure that all events get flushed. Arguments Example Copies an HDF5 file to a new file. This should be used instead of a system call to copy because it won't copy unused space that results from deleting datasets. Copies an HDF5 file to a new file. This should be used instead of a system call to copy because it won't copy unused space that results from deleting datasets. Efficiently add all time_series in one component to another by copying the underlying references. Arguments Efficiently add all time_series in one component to another by copying the underlying references. Arguments Deserialize an object from standard types stored in non-Julia formats, such as JSON, into Julia types. Compute the conjunction of the Deserialize an object from standard types stored in non-Julia formats, such as JSON, into Julia types. Compute the conjunction of the Drop the supplemental attribute associations table. Drop the supplemental attribute associations table. Empty the minimum log levels stored for each group. Empty the minimum log levels stored for each group. Wrapper around SQLite.DBInterface.execute to provide log messages. Wrapper around SQLite.DBInterface.execute to provide log messages. Run a query to find a count. The query must produce a column called count with one row. Run a query to find a count. The query must produce a column called count with one row. Return a time_series truncated starting with timestamp. Return a time_series truncated starting with timestamp. Constructs Hdf5TimeSeriesStorage from an existing file. Constructs Hdf5TimeSeriesStorage from an existing file. Load a TimeSeriesMetadataStore from an HDF5 file into an in-memory database. Load a TimeSeriesMetadataStore from an HDF5 file into an in-memory database. Deserializes a InfrastructureSystemsType from a JSON filename. Deserializes a InfrastructureSystemsType from a JSON filename. Deserializes a InfrastructureSystemsType from String or IO. Deserializes a InfrastructureSystemsType from String or IO. Generate a Julia source code file for one struct from a Refer to Arguments Generate a Julia source code file for one struct from a Refer to Arguments Generate Julia source code files for multiple structs from a iterable of Refer to Arguments Returns an array of abstract types that are direct subtypes of T. Returns an array of all concrete subtypes of T. Caches the values for faster lookup on repeated calls. Note that this does not find parameterized types. It will also not find types dynamically added after the first call of given type. Generate Julia source code files for multiple structs from a iterable of Refer to Arguments Returns an array of abstract types that are direct subtypes of T. Returns an array of all concrete subtypes of T. Caches the values for faster lookup on repeated calls. Note that this does not find parameterized types. It will also not find types dynamically added after the first call of given type. Return a Vector of subsystem names that contain the component. Return a Vector of subsystem names that contain the component. Return a Vector of OrderedDict of stored time series counts by type. Return a Vector of OrderedDict of stored time series counts by type. Return a DataFrame with the number of supplemental attributes by type for components. Return a DataFrame with the number of supplemental attributes by type for components. Get the component of type T with name. Returns nothing if no component matches. If T is an abstract type then the names of components across all subtypes of T must be unique. See Throws ArgumentError if T is not a concrete type and there is more than one component with requested name Get the component of type T with name. Returns nothing if no component matches. If T is an abstract type then the names of components across all subtypes of T must be unique. See Throws ArgumentError if T is not a concrete type and there is more than one component with requested name Returns an iterator of components. T can be concrete or abstract. Call collect on the result if an array is desired. Arguments See also: Returns an iterator of components. T can be concrete or abstract. Call collect on the result if an array is desired. Arguments See also: Get the components of abstract type T with name. Note that InfrastructureSystems enforces unique names on each concrete type but not across concrete types. See Throws ArgumentError if T is not an abstract type. Returns an array of concrete types that are direct subtypes of T. Get the components of abstract type T with name. Note that InfrastructureSystems enforces unique names on each concrete type but not across concrete types. See Throws ArgumentError if T is not an abstract type. Returns an array of concrete types that are direct subtypes of T. Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Return a String for the data type of the forecast data, this implementation avoids the use of Return a String for the data type of the forecast data, this implementation avoids the use of Return a user-modifiable dictionary to store extra information. Return a user-modifiable dictionary to store extra information. Get Get Get Get Get Get Get Get Return the minimum logging level for a group or nothing if Return the minimum logging level for a group or nothing if Return the minimum logging levels for groups that have been stored. Return the minimum logging levels for groups that have been stored. Get Get Get Get Get Get Get Get Return the initial times in the forecast. Return the initial times in the forecast. Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Returns an iterable of log events for a level. Returns an iterable of log events for a level. Return the metadata matching the inputs. Throw an exception if there is more than one matching input. Return the metadata matching the inputs. Throw an exception if there is more than one matching input. Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Return the timestamp for the next read with Return Return the timestamp for the next read with Return Return the next TimeSeries.TimeArray. Returns Reads from storage if the data is not already in cache. Arguments Examples Return the number of supplemental attributes. Return the number of supplemental attributes. Return the number of components with supplemental attributes. Return the number of components with supplemental attributes. Return the number of steps specified by the period in the file. Return the number of steps specified by the period in the file. Return the number of steps specified by the period in the file. Return the number of steps specified by the period in the file. Return the number of steps specified by the period in the file. Return the number of steps specified by the period in the file. Return the number of subsystems in the system. Return the number of subsystems in the system. Return the number of unique time series arrays. Return the number of unique time series arrays. Get Get Get Get Return the column names that specify the Period. Return the column names that specify the Period. Get the points that define the piecewise data Get from a subtype or instance of FunctionData the type of data its getrawdata method returns Get the points that define the piecewise data Get from a subtype or instance of FunctionData the type of data its getrawdata method returns Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Return the resolution from a TimeArray. Get Return the resolution from a TimeArray. Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Get Return the type information for the serialized struct. Get Return the type information for the serialized struct. Get Get Calculates the slopes of the line segments defined by the PiecewiseLinearData, returning one fewer slope than the number of underlying points. Calculates the slopes of the line segments defined by the PiecewiseLinearData, returning one fewer slope than the number of underlying points. Return a Generator of all components in the subsystem. Throws ArgumentError if the subsystem name is not stored. Return a Generator of all components in the subsystem. Throws ArgumentError if the subsystem name is not stored. Return an iterator of all subsystem names in the system. Return an iterator of all subsystem names in the system. Returns an iterator of supplemental_attributes. T can be concrete or abstract. Call collect on the result if an array is desired. Arguments Returns an iterator of supplemental_attributes. T can be concrete or abstract. Call collect on the result if an array is desired. Arguments Return a Vector of supplemental_attributes. T can be concrete or abstract. Arguments Return a Vector of supplemental_attributes. T can be concrete or abstract. Arguments Return the exact stored data in a time series, using a time series key look up This will load all forecast windows into memory by default. Be aware of how much data is stored. Specify start_time and len if you only need a subset of data. Does not apply a scaling factor multiplier. Arguments Return the exact stored data in a time series, using a time series key look up This will load all forecast windows into memory by default. Be aware of how much data is stored. Specify start_time and len if you only need a subset of data. Does not apply a scaling factor multiplier. Arguments Return the exact stored data in a time series This will load all forecast windows into memory by default. Be aware of how much data is stored. Specify Does not apply a scaling factor multiplier. Arguments See also: Return the exact stored data in a time series This will load all forecast windows into memory by default. Be aware of how much data is stored. Specify Does not apply a scaling factor multiplier. Arguments See also: Return a If the time series data are scaling factors, the returned data will be scaled by the scaling factor multiplier by default. Arguments See also: Return a If the time series data are scaling factors, the returned data will be scaled by the scaling factor multiplier by default. Arguments See also: Return the TimeSeries.TimeArray starting at timestamp. Reads from storage if the data is not already in cache. Timestamps must be read sequentially. Repeated reads are allowed. Random access may be added in the future. Arguments Return the TimeSeries.TimeArray starting at timestamp. Reads from storage if the data is not already in cache. Timestamps must be read sequentially. Repeated reads are allowed. Random access may be added in the future. Arguments Return a If the time series data are scaling factors, the returned data will be scaled by the scaling factor multiplier by default. Arguments See also Return a If the time series data are scaling factors, the returned data will be scaled by the scaling factor multiplier by default. Arguments See also Return a If the time series data are scaling factors, the returned data will be scaled by the scaling factor multiplier by default. This will load all forecast windows into memory by default. Be aware of how much data is stored. Specify Arguments See also: Return a If the time series data are scaling factors, the returned data will be scaled by the scaling factor multiplier by default. This will load all forecast windows into memory by default. Be aware of how much data is stored. Specify Arguments See also: Return an instance of TimeSeriesCounts. Return an instance of TimeSeriesCounts. Return a Vector of OrderedDict of stored time series counts by type. Return the time series format used in the CSV file. Return a Vector of OrderedDict of stored time series counts by type. Return the time series format used in the CSV file. Return information about each time series array attached to the owner. This information can be used to call gettimeseries. Return information about each time series array attached to the owner. This information can be used to call gettimeseries. Return information about each time series array attached to the owner. This information can be used to call Return information about each time series array attached to the owner. This information can be used to call Return the TimeSeriesManager or nothing if the component/attribute does not support time series. Return the TimeSeriesManager or nothing if the component/attribute does not support time series. Returns an iterator of TimeSeriesData instances attached to the system. Note that passing a filter function can be much slower than the other filtering parameters because it reads time series data from media. Call Arguments Returns an iterator of TimeSeriesData instances attached to the system. Note that passing a filter function can be much slower than the other filtering parameters because it reads time series data from media. Call Arguments Returns an iterator of TimeSeriesData instances attached to the component or attribute. Note that passing a filter function can be much slower than the other filtering parameters because it reads time series data from media. Call Arguments Returns an iterator of TimeSeriesData instances attached to the component or attribute. Note that passing a filter function can be much slower than the other filtering parameters because it reads time series data from media. Call Arguments Return a sorted Vector of distinct resolutions for all time series of the given type (or all types). Return a sorted Vector of distinct resolutions for all time series of the given type (or all types). Return a DataFrame with the number of time series by type for components and supplemental attributes. Return a DataFrame with the number of time series by type for components and supplemental attributes. Return a vector of timestamps from a cached Forecast instance. Arguments See also: Return a vector of timestamps from a cached Forecast instance. Arguments See also: Return a vector of timestamps from a cached StaticTimeSeries instance. Arguments See also: Return a vector of timestamps from a cached StaticTimeSeries instance. Arguments See also: Return a vector of timestamps from storage for the given time series parameters. Arguments See also: Return a vector of timestamps from storage for the given time series parameters. Arguments See also: Get Get Get Get Get Get Get Get Get Get Return an vector of timeseries data without timestamps from a cached Arguments See also: Return an vector of timeseries data without timestamps from a cached Arguments See also: Return an vector of timeseries data without timestamps for one forecast window from a cached Arguments See also: Return an vector of timeseries data without timestamps for one forecast window from a cached Arguments See also: Return an vector of timeseries data without timestamps from storage If the data size is small and this will be called many times, consider using the version that accepts a cached Arguments See also: Return an vector of timeseries data without timestamps from storage If the data size is small and this will be called many times, consider using the version that accepts a cached Arguments See also: Return a Dates.DateTime for the row in the CSV file. Return the total period covered by the forecast. Return a Dates.DateTime for the row in the CSV file. Return the total period covered by the forecast. Return a vector of dicts of unique timestamps and their counts. Return a vector of dicts of unique timestamps and their counts. Gets the UUID for any InfrastructureSystemsType. Gets the UUID for any InfrastructureSystemsType. Return the column names with values. Return the column names with values. Return the column names with values (components). Return the column names with values (components). Return the forecast window corresponsing to interval index. Return the forecast window corresponsing to interval index. Get the x-coordinates of the points that define the piecewise data Get the x-coordinates of the points that define the piecewise data Get the x-coordinates of the points that define the piecewise data Get the x-coordinates of the points that define the piecewise data Calculates the x-length of each segment of a piecewise curve. Calculates the x-length of each segment of a piecewise curve. Get the y-coordinates of the points that define the PiecewiseLinearData Get the y-coordinates of the points that define the PiecewiseLinearData Get the y-coordinates of the segments in the PiecewiseStepData Get the y-coordinates of the segments in the PiecewiseStepData Return true if there is at least one association matching the inputs. Return true if there is at least one association matching the inputs. Check to see if a component with name exists. Check to see if a component with name exists. Return true if the component is in the subsystem. Return true if the component is in the subsystem. Check to see if a component exists. Check to see if a component exists. Check to see if a component if the given type exists. Check to see if a component if the given type exists. Return True if there is time series metadata matching the inputs. Return True if there is time series metadata matching the inputs. Return true if the component has supplemental attributes. Return true if the component has supplemental attributes. Return true if the component has supplemental attributes of the given type. Return true if the component has supplemental attributes of the given type. Return True if there is time series matching the UUID. Return True if there is time series matching the UUID. Return true if the component or supplemental attribute has time series data. Return true if the component or supplemental attribute has time series data. Return true if the component or supplemental attribute has time series data of type T. Compute a hash of the instance Return true if the component or supplemental attribute has time series data of type T. Compute a hash of the instance Return a time_series with only the first num values. Return a time_series with only the first num values. Increments the count of a log event. Increments the count of a log event. Return the Dates.DateTime corresponding to an interval index. Return the Dates.DateTime corresponding to an interval index. Return true if the component is assigned to the subsystem. Return true if the component is assigned to the subsystem. Return true if the component is assigned to any subsystems. Return true if the component is assigned to any subsystems. Returns True/False depending on the convexity of the underlying data Perform a test to see if JSON3 can convert this value so that the code can give the user a a comprehensible corrective action. Compute the conjunction of the Returns True/False depending on the convexity of the underlying data Perform a test to see if JSON3 can convert this value so that the code can give the user a a comprehensible corrective action. Compute the conjunction of the Iterates over all components. Examples See also: See also: Iterates over all data in the container. Iterates over all data in the container. Iterates over all supplemental_attributes. Examples Iterate over the windows in a forecast Examples Iterate over the windows in a forecast Examples Iterate over the windows in a forecast Examples Iterate over the windows in a forecast Examples Return the component UUIDs associated with the attribute. Return the component UUIDs associated with the attribute. Return the supplemental attribute UUIDs associated with the component and attribute type. Return the supplemental attribute UUIDs associated with the component and attribute type. Return the metadata specified in the passed metadata vector that are already stored. Return the metadata specified in the passed metadata vector that are already stored. Return the time series UUIDs specified in the passed uuids that are already stored. Return the time series UUIDs specified in the passed uuids that are already stored. Return the time series UUIDs that match the inputs. Return the time series UUIDs that match the inputs. Return a Vector of NamedTuple of owner UUID and time series metadata matching the inputs. Return a Vector of NamedTuple of owner UUID and time series metadata matching the inputs. Return the events of type T in filename. Arguments Return the events of type T in filename. Arguments Add records to the database. Expects output from Add records to the database. Expects output from Return a TimeSeries.TimeArray for one forecast window. Return a TimeSeries.TimeArray for one forecast window. Return a time series from TimeSeriesFileMetadata. Arguments Return a time series from TimeSeriesFileMetadata. Arguments Removes the component from the main container and adds it to the masked container. Removes the component from the main container and adds it to the masked container. Opens a file logger using Logging.SimpleLogger. Example This function must be called when a component or attribute is removed from a system. This function must be called when a component or attribute is removed from a system. Parent object should call this prior to serialization so that SystemData can store the appropriate path information for the time series data. Parent object should call this prior to serialization so that SystemData can store the appropriate path information for the time series data. Return a TimeArray from a CSV file. Pass component_name when the file does not have the component name in a column header. Return a TimeArray from a CSV file. Pass component_name when the file does not have the component name in a column header. This version of the function supports the format where there is no column header for a component, so the component_name must be passed in. This version of the function supports the format where there is no column header for a component, so the component_name must be passed in. This version of the function only has component_name to match the interface. It is unused. Set start_datetime as a keyword argument for the starting timestamp, otherwise the current day is used. This version of the function only has component_name to match the interface. It is unused. Set start_datetime as a keyword argument for the starting timestamp, otherwise the current day is used. Return a TimeSeries.TimeArray representing the CSV file. This version of the function only has component_name to match the interface. It is unused. Return a TimeSeries.TimeArray representing the CSV file. This version of the function only has component_name to match the interface. It is unused. Return a RawTimeSeries from a CSV file. Pass component_name when the file does not have the component name in a column header. Return a RawTimeSeries from a CSV file. Pass component_name when the file does not have the component name in a column header. Reads time_series metadata and fixes relative paths to the data files. Redirect all data written to stdout by a function to log events. Register a recorder to log events. Afterwards, calls to @record name <event-type>() will record the event as JSON in <name>.log. Callers should guarantee that Arguments Reads time_series metadata and fixes relative paths to the data files. Redirect all data written to stdout by a function to log events. Register a recorder to log events. Afterwards, calls to @record name <event-type>() will record the event as JSON in <name>.log. Callers should guarantee that Arguments Remove the association between the attribute and component. Remove the association between the attribute and component. Remove all associations of the given type. Remove all associations of the given type. Remove a component by its value. Throws ArgumentError if the component is not stored. Remove a component by its value. Throws ArgumentError if the component is not stored. Remove a component by its name. Throws ArgumentError if the component is not stored. Remove a component by its name. Throws ArgumentError if the component is not stored. Remove a component from a subsystem. Throws ArgumentError if the subsystem name or component is not stored. Remove a component from a subsystem. Throws ArgumentError if the subsystem name or component is not stored. Remove all components of type T. Throws ArgumentError if the type is not stored. Remove all components of type T. Throws ArgumentError if the type is not stored. Remove the matching metadata from the store. Remove the matching metadata from the store. Remove a subsystem from the system. Throws ArgumentError if the subsystem name is not stored. Remove a subsystem from the system. Throws ArgumentError if the subsystem name is not stored. Remove all supplemental_attributes of type T. Ignores whether attributes are attached to components. Throws ArgumentError if the type is not stored. Remove all supplemental_attributes of type T. Ignores whether attributes are attached to components. Throws ArgumentError if the type is not stored. Remove the time series data for a component. Remove the time series data for a component. Remove the time series data for a component. Remove the time series data for a component. Removes all time series of a particular type from a System. Arguments Removes all time series of a particular type from a System. Arguments Replace the component UUID in the table. Replace the component UUID in the table. Replace the iterator, maintaining the cached dict. Replace the iterator, maintaining the cached dict. Returns a summary of log event counts by level. Returns a summary of log event counts by level. Returns a summary of log event counts by level. Reset parameters in order to start reading data from the beginning with Returns a summary of log event counts by level. Reset parameters in order to start reading data from the beginning with Reset the iterator for cases where underlying arrays have changed. Reset the iterator for cases where underlying arrays have changed. Serialize the Julia value into standard types that can be converted to non-Julia formats, such as JSON. In cases where val is an instance of a struct, return a Dict. In cases where val is a scalar value, return that value. Serialize the Julia value into standard types that can be converted to non-Julia formats, such as JSON. In cases where val is an instance of a struct, return a Dict. In cases where val is a scalar value, return that value. Set the component value in metadata by looking up the category in module. This requires that category be a string version of a component's abstract type. Modules can override for custom behavior. Set the component value in metadata by looking up the category in module. This requires that category be a string version of a component's abstract type. Modules can override for custom behavior. Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set the minimum log level for a group. The The minimum log level stored for a console or file logger supercede this setting. Set the minimum log level for a group. The The minimum log level stored for a console or file logger supercede this setting. Set the minimum log levels for multiple groups. Refer to Set the minimum log levels for multiple groups. Refer to Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Set Show the events of type T in filename in a table. Refer to PrettyTables.jl documentation for accepted kwargs. Arguments Examples Show a table with supplemental attributes attached to the component. Show a table with supplemental attributes attached to the component. Show a table with time series data attached to the component. Show a table with time series data attached to the component. Run a query and return the results in a DataFrame. Run a query and return the results in a DataFrame. Run a query and return the results in a DataFrame. Run a query and return the results in a DataFrame. Strips the module name off of a type. This can be useful to print types as strings and receive consistent results regardless of whether the user used Unlike Base.nameof, this function preserves any parametric types. Examples Returns an array of all super types of T. Returns an array of all super types of T. Return a time_series with only the ending num values. Return a time_series with only the ending num values. Return true if the structs defined in existingdir match structs freshly-generated from descriptorfile. Return true if the structs defined in existingdir match structs freshly-generated from descriptorfile. Return a time_series truncated after timestamp. Return a time_series truncated after timestamp. Serialize all system and component data to a dictionary. Serialize all system and component data to a dictionary. Serializes a InfrastructureSystemsType to a JSON string. Serializes a InfrastructureSystemsType to a JSON string. Serializes a InfrastructureSystemsType to a JSON file. Serializes a InfrastructureSystemsType to a JSON file. Return all rows in the table as dictionaries. Return all rows in the table as dictionaries. Transform all instances of SingleTimeSeries to DeterministicSingleTimeSeries. If all SingleTimeSeries instances cannot be transformed then none will be. Any existing DeterministicSingleTimeSeries forecasts will be deleted even if the inputs are invalid. Unregister the recorder with this name and stop recording events. Return true if all publicly exported names in mod are defined. Transform all instances of SingleTimeSeries to DeterministicSingleTimeSeries. If all SingleTimeSeries instances cannot be transformed then none will be. Any existing DeterministicSingleTimeSeries forecasts will be deleted even if the inputs are invalid. Unregister the recorder with this name and stop recording events. Return true if all publicly exported names in mod are defined. Validates a struct using only information within the struct. Validates a struct using only information within the struct. Refer to TimeSeries.when(). Underlying data is copied. Throw an Examples Refer to TimeSeries.when(). Underlying data is copied. Throw an Examples Record an event if the recorder with name is enabled. Arguments Examples Macro to wrap Enum in a module to keep the top level scope clean. Examples Record an event if the recorder with name is enabled. Arguments Examples Macro to wrap Enum in a module to keep the top level scope clean. ExamplesInfrastructureSystems.DataFormatError
— TypeInfrastructureSystems.Deterministic
— Typemutable struct Deterministic <: AbstractDeterministic
+)
InfrastructureSystems.DataFormatError
— TypeInfrastructureSystems.Deterministic
— Typemutable struct Deterministic <: AbstractDeterministic
name::String
data::SortedDict
resolution::Dates.Period
scaling_factor_multiplier::Union{Nothing, Function}
internal::InfrastructureSystemsInternal
-end
name::String
: user-defined namedata::SortedDict
: timestamp - scalingfactorresolution::Dates.Period
: forecast resolutionscaling_factor_multiplier::Union{Nothing, Function}
: Applicable when the time series data are scaling factors. Called on the associated component to convert the values.internal::InfrastructureSystemsInternal
InfrastructureSystems.Deterministic
— MethodDeterministic(
+end
name::String
: user-defined namedata::SortedDict
: timestamp - scalingfactorresolution::Dates.Period
: forecast resolutionscaling_factor_multiplier::Union{Nothing, Function}
: Applicable when the time series data are scaling factors. Called on the associated component to convert the values.internal::InfrastructureSystemsInternal
InfrastructureSystems.Deterministic
— MethodDeterministic(
name::AbstractString,
input_data::AbstractDict{Dates.DateTime, <:TimeSeries.TimeArray};
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.Deterministic
-
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, TimeSeries.TimeArray}
: time series data.normalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.timestamp = :timestamp
: If the values are DataFrames is passed then this must be the column name that contains timestamps.InfrastructureSystems.Deterministic
— MethodDeterministic(
+
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, TimeSeries.TimeArray}
: time series data.normalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.timestamp = :timestamp
: If the values are DataFrames is passed then this must be the column name that contains timestamps.InfrastructureSystems.Deterministic
— MethodDeterministic(
name::AbstractString,
filename::AbstractString,
component::InfrastructureSystems.InfrastructureSystemsComponent,
@@ -24,14 +24,14 @@
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.Deterministic
-
name::AbstractString
: user-defined namefilename::AbstractString
: name of CSV file containing datacomponent::InfrastructureSystemsComponent
: component associated with the datanormalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.InfrastructureSystems.Deterministic
— MethodDeterministic(
+
name::AbstractString
: user-defined namefilename::AbstractString
: name of CSV file containing datacomponent::InfrastructureSystemsComponent
: component associated with the datanormalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.InfrastructureSystems.Deterministic
— MethodDeterministic(
name::AbstractString,
series_data::InfrastructureSystems.RawTimeSeries,
resolution::Dates.Period;
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.Deterministic
-
InfrastructureSystems.Deterministic
— MethodDeterministic(
+
InfrastructureSystems.Deterministic
— MethodDeterministic(
src::InfrastructureSystems.Deterministic,
name::AbstractString;
scaling_factor_multiplier
@@ -55,11 +55,11 @@
"max_reactive_power"
scaling_factor_multiplier = get_max_reactive_power,
)
-add_time_series!(sys, generator, forecast_max_reactive_power)
InfrastructureSystems.Deterministic
— MethodDeterministic(
+add_time_series!(sys, generator, forecast_max_reactive_power)
InfrastructureSystems.Deterministic
— MethodDeterministic(
forecast::InfrastructureSystems.Deterministic,
data
) -> InfrastructureSystems.Deterministic
-
InfrastructureSystems.DeterministicMetadata
— Typemutable struct DeterministicMetadata <: ForecastMetadata
+
InfrastructureSystems.DeterministicMetadata
— Typemutable struct DeterministicMetadata <: ForecastMetadata
name::String
resolution::Dates.Period
initial_timestamp::Dates.DateTime
@@ -71,50 +71,50 @@
scaling_factor_multiplier::Union{Nothing, Function}
features::Dict{String, Union{Bool, Int, String}}
internal::InfrastructureSystemsInternal
-end
name::String
: user-defined nameresolution::Dates.Period
:initial_timestamp::Dates.DateTime
: time series availability timeinterval::Dates.Period
: time step between forecast windowscount::Int
: number of forecast windowstime_series_uuid::UUIDs.UUID
: reference to time series datahorizon::Dates.Period
: length of this time seriestime_series_type::Type{<:AbstractDeterministic}
: Type of the time series data associated with this metadata.scaling_factor_multiplier::Union{Nothing, Function}
: (default: nothing
) Applicable when the time series data are scaling factors. Called on the associated component to convert the values.features::Dict{String, Union{Bool, Int, String}}
: (default: Dict{String, Any}()
) User-defined tags that differentiate multiple time series arrays that represent the same component attribute, such as different arrays for different scenarios or years.internal::InfrastructureSystemsInternal
:InfrastructureSystems.DeterministicSingleTimeSeries
— Typemutable struct DeterministicSingleTimeSeries <: AbstractDeterministic
+end
name::String
: user-defined nameresolution::Dates.Period
:initial_timestamp::Dates.DateTime
: time series availability timeinterval::Dates.Period
: time step between forecast windowscount::Int
: number of forecast windowstime_series_uuid::UUIDs.UUID
: reference to time series datahorizon::Dates.Period
: length of this time seriestime_series_type::Type{<:AbstractDeterministic}
: Type of the time series data associated with this metadata.scaling_factor_multiplier::Union{Nothing, Function}
: (default: nothing
) Applicable when the time series data are scaling factors. Called on the associated component to convert the values.features::Dict{String, Union{Bool, Int, String}}
: (default: Dict{String, Any}()
) User-defined tags that differentiate multiple time series arrays that represent the same component attribute, such as different arrays for different scenarios or years.internal::InfrastructureSystemsInternal
:InfrastructureSystems.DeterministicSingleTimeSeries
— Typemutable struct DeterministicSingleTimeSeries <: AbstractDeterministic
single_time_series::SingleTimeSeries
initial_timestamp::Dates.DateTime
interval::Dates.Period
count::Int
horizon::Int
-end
SingleTimeSeries
DeterministicSingleTimeSeries
behaves exactly like a Deterministic
, but instead of storing windows at each initial time it provides a view into the existing SingleTimeSeries
at incrementing offsets. This avoids large data duplications when there are the overlapping windows between forecasts. single_time_series::SingleTimeSeries
: wrapped SingleTimeSeries
objectinitial_timestamp::Dates.DateTime
: time series availability timeinterval::Dates.Period
: time step between forecast windowscount::Int
: number of forecast windowshorizon::Int
: length of this time seriesInfrastructureSystems.DeviceParameter
— TypeInfrastructureSystems.FileLogger
— TypeInfrastructureSystems.FlattenIteratorWrapper
— TypeInfrastructureSystems.Forecast
— Typeget_horizon_count
get_initial_times
get_initial_timestamp
get_name
get_scaling_factor_multiplier
get_window
iterate_windows
InfrastructureSystems.ForecastCache
— Methodcache_size_bytes
.get_next_time_series_array!
to retrieve data. Each iteration will return a TimeSeries.TimeArray covering one forecast window of length horizon_count
.::Type{T}
: subtype of Forecastcomponent::InfrastructureSystemsComponent
: componentname::AbstractString
: forecast namestart_time::Union{Nothing, Dates.DateTime} = nothing
: forecast start timehorizon_count::Union{Nothing, Int} = nothing
: forecast horizon countcache_size_bytes = TIME_SERIES_CACHE_SIZE_BYTES
: maximum size of data to keep in memoryignore_scaling_factors = false
: controls whether to ignore scaling_factor_multiplier
in the time series instanceInfrastructureSystems.GeographicInfo
— TypeInfrastructureSystems.Hdf5TimeSeriesStorage
— TypeInfrastructureSystems.Hdf5TimeSeriesStorage
— MethodHdf5TimeSeriesStorage(
+end
SingleTimeSeries
DeterministicSingleTimeSeries
behaves exactly like a Deterministic
, but instead of storing windows at each initial time it provides a view into the existing SingleTimeSeries
at incrementing offsets. This avoids large data duplications when there are the overlapping windows between forecasts. single_time_series::SingleTimeSeries
: wrapped SingleTimeSeries
objectinitial_timestamp::Dates.DateTime
: time series availability timeinterval::Dates.Period
: time step between forecast windowscount::Int
: number of forecast windowshorizon::Int
: length of this time seriesInfrastructureSystems.DeviceParameter
— TypeInfrastructureSystems.FileLogger
— TypeInfrastructureSystems.FlattenIteratorWrapper
— TypeInfrastructureSystems.Forecast
— Typeget_horizon_count
get_initial_times
get_initial_timestamp
get_name
get_scaling_factor_multiplier
get_window
iterate_windows
InfrastructureSystems.ForecastCache
— Methodcache_size_bytes
.get_next_time_series_array!
to retrieve data. Each iteration will return a TimeSeries.TimeArray covering one forecast window of length horizon_count
.::Type{T}
: subtype of Forecastcomponent::InfrastructureSystemsComponent
: componentname::AbstractString
: forecast namestart_time::Union{Nothing, Dates.DateTime} = nothing
: forecast start timehorizon_count::Union{Nothing, Int} = nothing
: forecast horizon countcache_size_bytes = TIME_SERIES_CACHE_SIZE_BYTES
: maximum size of data to keep in memoryignore_scaling_factors = false
: controls whether to ignore scaling_factor_multiplier
in the time series instanceInfrastructureSystems.GeographicInfo
— TypeInfrastructureSystems.Hdf5TimeSeriesStorage
— TypeInfrastructureSystems.Hdf5TimeSeriesStorage
— MethodHdf5TimeSeriesStorage(
create_file::Bool;
filename,
directory,
compression
) -> InfrastructureSystems.Hdf5TimeSeriesStorage
-
create_file::Bool
: create new filefilename=nothing
: if nothing, create a temp file, else use this name.directory=nothing
: if set and filename is nothing, create a temp file in this directory. If it is not set, use the environment variable SIENNATIMESERIES_DIRECTORY. If that is not set, use tempdir(). This should be set if the time series data is larger than the tmp filesystem can hold.InfrastructureSystems.Hdf5TimeSeriesStorage
— MethodHdf5TimeSeriesStorage(
+
create_file::Bool
: create new filefilename=nothing
: if nothing, create a temp file, else use this name.directory=nothing
: if set and filename is nothing, create a temp file in this directory. If it is not set, use the environment variable SIENNATIMESERIES_DIRECTORY. If that is not set, use tempdir(). This should be set if the time series data is larger than the tmp filesystem can hold.InfrastructureSystems.Hdf5TimeSeriesStorage
— MethodHdf5TimeSeriesStorage(
) -> InfrastructureSystems.Hdf5TimeSeriesStorage
-
InfrastructureSystems.InMemoryTimeSeriesStorage
— TypeInfrastructureSystems.InMemoryTimeSeriesStorage
— MethodInMemoryTimeSeriesStorage(
+
InfrastructureSystems.InMemoryTimeSeriesStorage
— TypeInfrastructureSystems.InMemoryTimeSeriesStorage
— MethodInMemoryTimeSeriesStorage(
hdf5_storage::InfrastructureSystems.Hdf5TimeSeriesStorage
) -> InfrastructureSystems.InMemoryTimeSeriesStorage
-
InfrastructureSystems.InfrastructureSystemsComponent
— TypeInfrastructureSystems.InfrastructureSystemsInternal
— TypeInfrastructureSystems.InfrastructureSystemsInternal
— MethodInfrastructureSystemsInternal(
+
InfrastructureSystems.InfrastructureSystemsComponent
— TypeInfrastructureSystems.InfrastructureSystemsInternal
— TypeInfrastructureSystems.InfrastructureSystemsInternal
— MethodInfrastructureSystemsInternal(
u::Base.UUID
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
InfrastructureSystems.InfrastructureSystemsInternal
— MethodInfrastructureSystemsInternal(
+
InfrastructureSystems.InfrastructureSystemsInternal
— MethodInfrastructureSystemsInternal(
;
uuid,
shared_system_references,
units_info,
ext
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
InfrastructureSystems.InfrastructureSystemsType
— TypeInfrastructureSystems.LazyDictFromIterator
— MethodK
: type of the dictionary keysV
: type of the dictionary valuesiter
: any object implementing the Iterator interfacegetter::Function
: method to call on V to get its KInfrastructureSystems.LinearFunctionData
— Typef(x) = proportional_term*x + constant_term
.proportional_term::Float64
: the proportional term in the represented functionconstant_term::Float64
: the constant term in the represented functionInfrastructureSystems.LogEvent
— TypeInfrastructureSystems.LogEventTracker
— TypeLogEventTracker() -> InfrastructureSystems.LogEventTracker
+
InfrastructureSystems.InfrastructureSystemsType
— TypeInfrastructureSystems.LazyDictFromIterator
— MethodK
: type of the dictionary keysV
: type of the dictionary valuesiter
: any object implementing the Iterator interfacegetter::Function
: method to call on V to get its KInfrastructureSystems.LinearFunctionData
— Typef(x) = proportional_term*x + constant_term
.proportional_term::Float64
: the proportional term in the represented functionconstant_term::Float64
: the constant term in the represented functionInfrastructureSystems.LogEvent
— TypeInfrastructureSystems.LogEventTracker
— TypeLogEventTracker() -> InfrastructureSystems.LogEventTracker
LogEventTracker(
levels
) -> InfrastructureSystems.LogEventTracker
LogEventTracker()
-LogEventTracker((Logging.Info, Logging.Warn, Logging.Error))
InfrastructureSystems.MultiLogger
— TypeMultiLogger([TerminalLogger(stderr), SimpleLogger(stream)], LogEventTracker())
InfrastructureSystems.MultiLogger
— MethodMultiLogger(
+LogEventTracker((Logging.Info, Logging.Warn, Logging.Error))
InfrastructureSystems.MultiLogger
— TypeMultiLogger([TerminalLogger(stderr), SimpleLogger(stream)], LogEventTracker())
InfrastructureSystems.MultiLogger
— MethodMultiLogger(
loggers::Array{T<:Base.CoreLogging.AbstractLogger}
) -> InfrastructureSystems.MultiLogger
-
MultiLogger([TerminalLogger(stderr), SimpleLogger(stream)])
InfrastructureSystems.NotImplementedError
— TypeTypeError
or ArgumentError
.InfrastructureSystems.PiecewiseLinearData
— Typepoints::Vector{@NamedTuple{x::Float64, y::Float64}}
: the points that define the functionInfrastructureSystems.PiecewiseStepData
— Typec
that can be used to store the initial y-value of that piecewise linear function. Principally used for the representation of cost functions where the points store quantities (x, dy/dx), such as (MW, /MWh).x_coords::Vector{Float64}
: the x-coordinates of the endpoints of the segmentsy_coords::Vector{Float64}
: the y-coordinates of the segments: y_coords[1]
is the y-value betweenx_coords[1]
and x_coords[2]
, etc. Must have one fewer elements than x_coords
.c::Union{Nothing, Float64}
: optional, the value to use for the integral from 0 to x_coords[1]
of this functionInfrastructureSystems.Probabilistic
— Typemutable struct Probabilistic <: Forecast
+
MultiLogger([TerminalLogger(stderr), SimpleLogger(stream)])
InfrastructureSystems.NotImplementedError
— TypeTypeError
or ArgumentError
.InfrastructureSystems.PiecewiseLinearData
— Typepoints::Vector{@NamedTuple{x::Float64, y::Float64}}
: the points that define the functionInfrastructureSystems.PiecewiseStepData
— Typec
that can be used to store the initial y-value of that piecewise linear function. Principally used for the representation of cost functions where the points store quantities (x, dy/dx), such as (MW, /MWh).x_coords::Vector{Float64}
: the x-coordinates of the endpoints of the segmentsy_coords::Vector{Float64}
: the y-coordinates of the segments: y_coords[1]
is the y-value betweenx_coords[1]
and x_coords[2]
, etc. Must have one fewer elements than x_coords
.c::Union{Nothing, Float64}
: optional, the value to use for the integral from 0 to x_coords[1]
of this functionInfrastructureSystems.Probabilistic
— Typemutable struct Probabilistic <: Forecast
name::String
resolution::Dates.Period
percentiles::Vector{Float64}
data::SortedDict
scaling_factor_multiplier::Union{Nothing, Function}
internal::InfrastructureSystemsInternal
-end
name::String
: user-defined nameresolution::Dates.Period
: forecast resolutionpercentiles::Vector{Float64}
: Percentiles for the probabilistic forecastdata::SortedDict
: timestamp - scalingfactorscaling_factor_multiplier::Union{Nothing, Function}
: Applicable when the time series data are scaling factors. Called on the associated component to convert the values.internal::InfrastructureSystemsInternal
InfrastructureSystems.Probabilistic
— MethodProbabilistic(
+end
name::String
: user-defined nameresolution::Dates.Period
: forecast resolutionpercentiles::Vector{Float64}
: Percentiles for the probabilistic forecastdata::SortedDict
: timestamp - scalingfactorscaling_factor_multiplier::Union{Nothing, Function}
: Applicable when the time series data are scaling factors. Called on the associated component to convert the values.internal::InfrastructureSystemsInternal
InfrastructureSystems.Probabilistic
— MethodProbabilistic(
name::AbstractString,
input_data::AbstractDict,
percentiles::Vector,
@@ -122,14 +122,14 @@
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.Probabilistic
-
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, Matrix{Float64}}
: time series data.percentiles
: Percentiles represented in the probabilistic forecastresolution::Dates.Period
: The resolution of the forecast in Dates.Period`normalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.InfrastructureSystems.Probabilistic
— MethodProbabilistic(
+
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, Matrix{Float64}}
: time series data.percentiles
: Percentiles represented in the probabilistic forecastresolution::Dates.Period
: The resolution of the forecast in Dates.Period`normalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.InfrastructureSystems.Probabilistic
— MethodProbabilistic(
name::AbstractString,
input_data::AbstractDict{Dates.DateTime, <:TimeSeries.TimeArray},
percentiles::Vector{Float64};
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.Probabilistic
-
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, TimeSeries.TimeArray}
: time series data.percentiles
: Percentiles represented in the probabilistic forecastnormalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.timestamp = :timestamp
: If the values are DataFrames is passed then this must be the column name that contains timestamps.InfrastructureSystems.Probabilistic
— MethodProbabilistic(
+
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, TimeSeries.TimeArray}
: time series data.percentiles
: Percentiles represented in the probabilistic forecastnormalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.timestamp = :timestamp
: If the values are DataFrames is passed then this must be the column name that contains timestamps.InfrastructureSystems.Probabilistic
— MethodProbabilistic(
name::AbstractString,
series_data::InfrastructureSystems.RawTimeSeries,
percentiles::Vector,
@@ -137,12 +137,12 @@
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.Probabilistic
-
InfrastructureSystems.Probabilistic
— MethodProbabilistic(
+
InfrastructureSystems.Probabilistic
— MethodProbabilistic(
src::InfrastructureSystems.Probabilistic,
name::AbstractString;
scaling_factor_multiplier
) -> InfrastructureSystems.Probabilistic
-
InfrastructureSystems.ProbabilisticMetadata
— Typemutable struct ProbabilisticMetadata <: ForecastMetadata
+
InfrastructureSystems.ProbabilisticMetadata
— Typemutable struct ProbabilisticMetadata <: ForecastMetadata
name::String
initial_timestamp::Dates.DateTime
resolution::Dates.Period
@@ -154,41 +154,41 @@
scaling_factor_multiplier::Union{Nothing, Function}
features::Dict{String, Union{Bool, Int, String}}
internal::InfrastructureSystemsInternal
-end
name::String
: user-defined nameinitial_timestamp::Dates.DateTime
: time series availability timeresolution::Dates.Period
:interval::Dates.Period
: time step between forecast windowscount::Int
: number of forecast windowspercentiles::Vector{Float64}
: Percentiles for the probabilistic forecasttime_series_uuid::UUIDs.UUID
: reference to time series datahorizon::Dates.Period
: length of this time seriesscaling_factor_multiplier::Union{Nothing, Function}
: (default: nothing
) Applicable when the time series data are scaling factors. Called on the associated component to convert the values.features::Dict{String, Union{Bool, Int, String}}
: (default: Dict{String, Any}()
) User-defined tags that differentiate multiple time series arrays that represent the same component attribute, such as different arrays for different scenarios or years.internal::InfrastructureSystemsInternal
:InfrastructureSystems.QuadraticFunctionData
— Typef(x) = quadratic_term*x^2 + proportional_term*x + constant_term
.quadratic_term::Float64
: the quadratic term in the represented functionproportional_term::Float64
: the proportional term in the represented functionconstant_term::Float64
: the constant term in the represented functionInfrastructureSystems.QuadraticFunctionData
— MethodQuadraticFunctionData(
+end
name::String
: user-defined nameinitial_timestamp::Dates.DateTime
: time series availability timeresolution::Dates.Period
:interval::Dates.Period
: time step between forecast windowscount::Int
: number of forecast windowspercentiles::Vector{Float64}
: Percentiles for the probabilistic forecasttime_series_uuid::UUIDs.UUID
: reference to time series datahorizon::Dates.Period
: length of this time seriesscaling_factor_multiplier::Union{Nothing, Function}
: (default: nothing
) Applicable when the time series data are scaling factors. Called on the associated component to convert the values.features::Dict{String, Union{Bool, Int, String}}
: (default: Dict{String, Any}()
) User-defined tags that differentiate multiple time series arrays that represent the same component attribute, such as different arrays for different scenarios or years.internal::InfrastructureSystemsInternal
:InfrastructureSystems.QuadraticFunctionData
— Typef(x) = quadratic_term*x^2 + proportional_term*x + constant_term
.quadratic_term::Float64
: the quadratic term in the represented functionproportional_term::Float64
: the proportional term in the represented functionconstant_term::Float64
: the constant term in the represented functionInfrastructureSystems.QuadraticFunctionData
— MethodQuadraticFunctionData(
data::InfrastructureSystems.LinearFunctionData
) -> InfrastructureSystems.QuadraticFunctionData
-
LinearFunctionData
to QuadraticFunctionData
InfrastructureSystems.RawTimeSeries
— TypeInfrastructureSystems.Recorder
— TypeInfrastructureSystems.Recorder
— MethodRecorder(
+
LinearFunctionData
to QuadraticFunctionData
InfrastructureSystems.RawTimeSeries
— TypeInfrastructureSystems.Recorder
— TypeInfrastructureSystems.Recorder
— MethodRecorder(
name::Symbol;
io,
mode,
directory
) -> InfrastructureSystems.Recorder
-
name::Symbol
: name of recorderio::Union{Nothing, IO}
: If nothing, record events in a file using name.mode = "w"
: Only used when io is nothing.directory = "."
: Only used when io is nothing.InfrastructureSystems.Results
— TypeInfrastructureSystems.Scenarios
— Typemutable struct Scenarios <: Forecast
+
name::Symbol
: name of recorderio::Union{Nothing, IO}
: If nothing, record events in a file using name.mode = "w"
: Only used when io is nothing.directory = "."
: Only used when io is nothing.InfrastructureSystems.Results
— TypeInfrastructureSystems.Scenarios
— Typemutable struct Scenarios <: Forecast
name::String
resolution::Dates.Period
scenario_count::Int64
data::SortedDict
scaling_factor_multiplier::Union{Nothing, Function}
internal::InfrastructureSystemsInternal
-end
name::String
: user-defined nameresolution::Dates.Period
: forecast resolutionscenario_count::Int64
: Number of scenariosdata::SortedDict
: timestamp - scalingfactorscaling_factor_multiplier::Union{Nothing, Function}
: Applicable when the time series data are scaling factors. Called on the associated component to convert the values.internal::InfrastructureSystemsInternal
InfrastructureSystems.Scenarios
— MethodScenarios(
+end
name::String
: user-defined nameresolution::Dates.Period
: forecast resolutionscenario_count::Int64
: Number of scenariosdata::SortedDict
: timestamp - scalingfactorscaling_factor_multiplier::Union{Nothing, Function}
: Applicable when the time series data are scaling factors. Called on the associated component to convert the values.internal::InfrastructureSystemsInternal
InfrastructureSystems.Scenarios
— MethodScenarios(
name::AbstractString,
input_data::AbstractDict,
resolution::Dates.Period;
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.Scenarios
-
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, Matrix{Float64}}
: time series data.resolution::Dates.Period
: The resolution of the forecast in Dates.Period`normalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.InfrastructureSystems.Scenarios
— MethodScenarios(
+
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, Matrix{Float64}}
: time series data.resolution::Dates.Period
: The resolution of the forecast in Dates.Period`normalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.InfrastructureSystems.Scenarios
— MethodScenarios(
name::AbstractString,
input_data::AbstractDict{Dates.DateTime, <:TimeSeries.TimeArray};
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.Scenarios
-
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, TimeSeries.TimeArray}
: time series data.normalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.timestamp = :timestamp
: If the values are DataFrames is passed then this must be the column name that contains timestamps.InfrastructureSystems.Scenarios
— MethodScenarios(
+
name::AbstractString
: user-defined nameinput_data::AbstractDict{Dates.DateTime, TimeSeries.TimeArray}
: time series data.normalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.timestamp = :timestamp
: If the values are DataFrames is passed then this must be the column name that contains timestamps.InfrastructureSystems.Scenarios
— MethodScenarios(
src::InfrastructureSystems.Scenarios,
name::AbstractString;
scaling_factor_multiplier
) -> InfrastructureSystems.Scenarios
-
InfrastructureSystems.ScenariosMetadata
— Typemutable struct ScenariosMetadata <: ForecastMetadata
+
InfrastructureSystems.ScenariosMetadata
— Typemutable struct ScenariosMetadata <: ForecastMetadata
name::String
resolution::Dates.Period
initial_timestamp::Dates.DateTime
@@ -200,12 +200,12 @@
scaling_factor_multiplier::Union{Nothing, Function}
features::Dict{String, Union{Bool, Int, String}}
internal::InfrastructureSystemsInternal
-end
name::String
: user-defined nameresolution::Dates.Period
:initial_timestamp::Dates.DateTime
: time series availability timeinterval::Dates.Period
: time step between forecast windowsscenario_count::Int64
: Number of scenarioscount::Int
: number of forecast windowstime_series_uuid::UUIDs.UUID
: reference to time series datahorizon::Dates.Period
: length of this time seriesscaling_factor_multiplier::Union{Nothing, Function}
: (default: nothing
) Applicable when the time series data are scaling factors. Called on the associated component to convert the values.features::Dict{String, Union{Bool, Int, String}}
: (default: Dict{String, Any}()
) User-defined tags that differentiate multiple time series arrays that represent the same component attribute, such as different arrays for different scenarios or years.internal::InfrastructureSystemsInternal
:InfrastructureSystems.SingleTimeSeries
— Typemutable struct SingleTimeSeries <: StaticTimeSeries
+end
name::String
: user-defined nameresolution::Dates.Period
:initial_timestamp::Dates.DateTime
: time series availability timeinterval::Dates.Period
: time step between forecast windowsscenario_count::Int64
: Number of scenarioscount::Int
: number of forecast windowstime_series_uuid::UUIDs.UUID
: reference to time series datahorizon::Dates.Period
: length of this time seriesscaling_factor_multiplier::Union{Nothing, Function}
: (default: nothing
) Applicable when the time series data are scaling factors. Called on the associated component to convert the values.features::Dict{String, Union{Bool, Int, String}}
: (default: Dict{String, Any}()
) User-defined tags that differentiate multiple time series arrays that represent the same component attribute, such as different arrays for different scenarios or years.internal::InfrastructureSystemsInternal
:InfrastructureSystems.SingleTimeSeries
— Typemutable struct SingleTimeSeries <: StaticTimeSeries
name::String
data::TimeSeries.TimeArray
scaling_factor_multiplier::Union{Nothing, Function}
internal::InfrastructureSystemsInternal
-end
name::String
: user-defined namedata::TimeSeries.TimeArray
: timestamp - scalingfactorresolution::Dates.Period
: Time duration between steps in the time series. The resolution must be the same throughout the time seriesscaling_factor_multiplier::Union{Nothing, Function}
: Applicable when the time series data are scaling factors. Called on the associated component to convert the values.internal::InfrastructureSystemsInternal
InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
+end
name::String
: user-defined namedata::TimeSeries.TimeArray
: timestamp - scalingfactorresolution::Dates.Period
: Time duration between steps in the time series. The resolution must be the same throughout the time seriesscaling_factor_multiplier::Union{Nothing, Function}
: Applicable when the time series data are scaling factors. Called on the associated component to convert the values.internal::InfrastructureSystemsInternal
InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
name::AbstractString,
filename::AbstractString,
component::InfrastructureSystems.InfrastructureSystemsComponent,
@@ -213,29 +213,29 @@
normalization_factor,
scaling_factor_multiplier
) -> InfrastructureSystems.SingleTimeSeries
-
name::AbstractString
: user-defined namefilename::AbstractString
: name of CSV file containing datacomponent::InfrastructureSystemsComponent
: component associated with the dataresolution::Dates.Period
: resolution of the time seriesnormalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
+
name::AbstractString
: user-defined namefilename::AbstractString
: name of CSV file containing datacomponent::InfrastructureSystemsComponent
: component associated with the dataresolution::Dates.Period
: resolution of the time seriesnormalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
name::AbstractString,
data::Union{DataFrames.DataFrame, TimeSeries.TimeArray};
normalization_factor,
scaling_factor_multiplier,
timestamp
) -> InfrastructureSystems.SingleTimeSeries
-
name::AbstractString
: user-defined namedata::Union{TimeSeries.TimeArray, DataFrames.DataFrame}
: time series datanormalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.timestamp = :timestamp
: If a DataFrame is passed then this must be the column name that contains timestamps.InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
+
name::AbstractString
: user-defined namedata::Union{TimeSeries.TimeArray, DataFrames.DataFrame}
: time series datanormalization_factor::NormalizationFactor = 1.0
: optional normalization factor to apply to each data entryscaling_factor_multiplier::Union{Nothing, Function} = nothing
: If the data are scaling factors then this function will be called on the component and applied to the data when get_time_series_array
is called.timestamp = :timestamp
: If a DataFrame is passed then this must be the column name that contains timestamps.InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
src::InfrastructureSystems.SingleTimeSeries,
name::AbstractString;
scaling_factor_multiplier
) -> InfrastructureSystems.SingleTimeSeries
-
InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
+
InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
time_series::InfrastructureSystems.SingleTimeSeries,
data::TimeSeries.TimeArray
) -> Any
-
InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
+
InfrastructureSystems.SingleTimeSeries
— MethodSingleTimeSeries(
name::String,
resolution::Dates.Period,
initial_time::Dates.DateTime,
time_steps::Int64
) -> InfrastructureSystems.SingleTimeSeries
-
initial_time
and time_steps
.InfrastructureSystems.SingleTimeSeriesMetadata
— Typemutable struct SingleTimeSeriesMetadata <: StaticTimeSeriesMetadata
+
initial_time
and time_steps
.InfrastructureSystems.SingleTimeSeriesMetadata
— Typemutable struct SingleTimeSeriesMetadata <: StaticTimeSeriesMetadata
name::String
resolution::Dates.Period
initial_timestamp::Dates.DateTime
@@ -244,7 +244,7 @@
scaling_factor_multiplier::Union{Nothing, Function}
features::Dict{String, Union{Bool, Int, String}}
internal::InfrastructureSystemsInternal
-end
name::String
: user-defined nameresolution::Dates.Period
:initial_timestamp::Dates.DateTime
: time series availability timetime_series_uuid::UUIDs.UUID
: reference to time series datalength::Int
: length of this time seriesscaling_factor_multiplier::Union{Nothing, Function}
: (default: nothing
) Applicable when the time series data are scaling factors. Called on the associated component to convert the values.features::Dict{String, Union{Bool, Int, String}}
: (default: Dict{String, Any}()
) User-defined tags that differentiate multiple time series arrays that represent the same component attribute, such as different arrays for different scenarios or years.internal::InfrastructureSystemsInternal
:InfrastructureSystems.StaticTimeSeriesCache
— Methodcache_size_bytes
.get_time_series_array
to retrieve data. Each iteration will return a TimeSeries.TimeArray of size 1.::Type{T}
: subtype of StaticTimeSeriescomponent::InfrastructureSystemsComponent
: componentname::AbstractString
: time series namecache_size_bytes = TIME_SERIES_CACHE_SIZE_BYTES
: maximum size of data to keep in memoryignore_scaling_factors = false
: controls whether to ignore scalingfactormultiplier in the time series instanceInfrastructureSystems.StructDefinition
— MethodStructDefinition(
+end
name::String
: user-defined nameresolution::Dates.Period
:initial_timestamp::Dates.DateTime
: time series availability timetime_series_uuid::UUIDs.UUID
: reference to time series datalength::Int
: length of this time seriesscaling_factor_multiplier::Union{Nothing, Function}
: (default: nothing
) Applicable when the time series data are scaling factors. Called on the associated component to convert the values.features::Dict{String, Union{Bool, Int, String}}
: (default: Dict{String, Any}()
) User-defined tags that differentiate multiple time series arrays that represent the same component attribute, such as different arrays for different scenarios or years.internal::InfrastructureSystemsInternal
:InfrastructureSystems.StaticTimeSeriesCache
— Methodcache_size_bytes
.get_time_series_array
to retrieve data. Each iteration will return a TimeSeries.TimeArray of size 1.::Type{T}
: subtype of StaticTimeSeriescomponent::InfrastructureSystemsComponent
: componentname::AbstractString
: time series namecache_size_bytes = TIME_SERIES_CACHE_SIZE_BYTES
: maximum size of data to keep in memoryignore_scaling_factors = false
: controls whether to ignore scalingfactormultiplier in the time series instanceInfrastructureSystems.StructDefinition
— MethodStructDefinition(
;
struct_name,
fields,
@@ -252,7 +252,7 @@
docstring,
is_component
)
-
struct_name::AbstractString
: Struct namefields::Vector{StructField}
: Struct fields. Refer to StructField
.docstring::AbstractString
: Struct docstring. Defaults to an empty string.supertype::Union{String, DataType}
: Struct supertype. Defaults to no supertype.is_component::Bool
: Set to true for component types that will be attached to a system. Do not set to Default to true.InfrastructureSystems.StructField
— MethodStructField(
+
struct_name::AbstractString
: Struct namefields::Vector{StructField}
: Struct fields. Refer to StructField
.docstring::AbstractString
: Struct docstring. Defaults to an empty string.supertype::Union{String, DataType}
: Struct supertype. Defaults to no supertype.is_component::Bool
: Set to true for component types that will be attached to a system. Do not set to Default to true.InfrastructureSystems.StructField
— MethodStructField(
;
name,
data_type,
@@ -265,10 +265,10 @@
null_value,
internal_default
)
-
name::String
: Field namedata_type::Union{DataType, String}
: Field typedefault::Any
: The generated constructors will define this as a default value.comment::String
: Include this comment above the field name. Defaults to empty string.needs_conversion::Bool
: Set to true if the getter and setter functions need to apply unit conversion. The type must implement get_value(::Component, ::Type)
and set_value(::Component, ::Type)
for this combination of component type and field type.exclude_setter::Bool
: Do not generate a setter function for this field. Defaults to false.valid_range::Union{Nothing, String, Dict}
: Enables range validation when the component is added to a system. Define this as a Dict with "min" and "max" or as a String with the field name in the struct that defines this field's valid range and InfrastructureSystems will validate any value against that range. Use nothing
if one doesn't apply, such as if there is no max limit.validation_action
: Define this as "error" or "warn". If it is "error" then InfrastructureSystems will throw an exception if the validation code detects a problem. Otherwise, it will log a warning.null_value::Any
: Value to indicate the field is zero or empty, such as 0.0 for Float64. If all members in the struct define this field then a "demo" constructor will be generated. This allows entering val = MyType(nothing)
in the REPL to see the layout of a struct without worrying about valid values.internal_default
: Set to true for non-user-facing fields like InfrastructureSystemsInternal
that have default values.InfrastructureSystems.SupplementalAttribute
— TypeInfrastructureSystems.SupplementalAttributeAssociations
— MethodSupplementalAttributeAssociations(
+
name::String
: Field namedata_type::Union{DataType, String}
: Field typedefault::Any
: The generated constructors will define this as a default value.comment::String
: Include this comment above the field name. Defaults to empty string.needs_conversion::Bool
: Set to true if the getter and setter functions need to apply unit conversion. The type must implement get_value(::Component, ::Type)
and set_value(::Component, ::Type)
for this combination of component type and field type.exclude_setter::Bool
: Do not generate a setter function for this field. Defaults to false.valid_range::Union{Nothing, String, Dict}
: Enables range validation when the component is added to a system. Define this as a Dict with "min" and "max" or as a String with the field name in the struct that defines this field's valid range and InfrastructureSystems will validate any value against that range. Use nothing
if one doesn't apply, such as if there is no max limit.validation_action
: Define this as "error" or "warn". If it is "error" then InfrastructureSystems will throw an exception if the validation code detects a problem. Otherwise, it will log a warning.null_value::Any
: Value to indicate the field is zero or empty, such as 0.0 for Float64. If all members in the struct define this field then a "demo" constructor will be generated. This allows entering val = MyType(nothing)
in the REPL to see the layout of a struct without worrying about valid values.internal_default
: Set to true for non-user-facing fields like InfrastructureSystemsInternal
that have default values.InfrastructureSystems.SupplementalAttribute
— TypeInfrastructureSystems.SupplementalAttributeAssociations
— MethodSupplementalAttributeAssociations(
) -> InfrastructureSystems.SupplementalAttributeAssociations
-
InfrastructureSystems.SystemData
— Typemutable struct SystemData <: InfrastructureSystemsType
+
InfrastructureSystems.SystemData
— Typemutable struct SystemData <: InfrastructureSystemsType
components::Components
"Masked components are attached to the system for overall management purposes but
are not exposed in the standard library calls like [`get_components`](@ref).
@@ -276,131 +276,131 @@
masked_components::Components
validation_descriptors::Vector
internal::InfrastructureSystemsInternal
-end
InfrastructureSystems.SystemData
— MethodSystemData(
+end
InfrastructureSystems.SystemData
— MethodSystemData(
;
validation_descriptor_file,
time_series_in_memory,
time_series_directory,
compression
) -> InfrastructureSystems.SystemData
-
validation_descriptor_file = nothing
: Optionally, a file defining component validation descriptors.time_series_in_memory = false
: Controls whether time series data is stored in memory or in a file.time_series_directory = nothing
: Controls what directory time series data is stored in. Default is the environment variable SIENNATIMESERIES_DIRECTORY or tempdir() if that isn't set.compression = CompressionSettings()
: Controls compression of time series data.InfrastructureSystems.TimeSeriesAssociation
— Typeassociation1 = TimeSeriesAssociation(component, time_series)
-association2 = TimeSeriesAssociation(component, time_series, scenario = "high")
InfrastructureSystems.TimeSeriesCounts
— TypeInfrastructureSystems.TimeSeriesData
— TypeInfrastructureSystems.TimeSeriesFileMetadata
— TypeInfrastructureSystems.TimeSeriesMetadata
— TypeInfrastructureSystems.TimeSeriesMetadataStore
— MethodTimeSeriesMetadataStore(
+
validation_descriptor_file = nothing
: Optionally, a file defining component validation descriptors.time_series_in_memory = false
: Controls whether time series data is stored in memory or in a file.time_series_directory = nothing
: Controls what directory time series data is stored in. Default is the environment variable SIENNATIMESERIES_DIRECTORY or tempdir() if that isn't set.compression = CompressionSettings()
: Controls compression of time series data.InfrastructureSystems.TimeSeriesAssociation
— Typeassociation1 = TimeSeriesAssociation(component, time_series)
+association2 = TimeSeriesAssociation(component, time_series, scenario = "high")
InfrastructureSystems.TimeSeriesCounts
— TypeInfrastructureSystems.TimeSeriesData
— TypeInfrastructureSystems.TimeSeriesFileMetadata
— TypeInfrastructureSystems.TimeSeriesMetadata
— TypeInfrastructureSystems.TimeSeriesMetadataStore
— MethodTimeSeriesMetadataStore(
filename::AbstractString
) -> InfrastructureSystems.TimeSeriesMetadataStore
-
InfrastructureSystems.TimeSeriesMetadataStore
— MethodTimeSeriesMetadataStore(
+
InfrastructureSystems.TimeSeriesMetadataStore
— MethodTimeSeriesMetadataStore(
) -> InfrastructureSystems.TimeSeriesMetadataStore
-
InfrastructureSystems.TimeSeriesStorage
— TypeBase.close
— Methodclose(logger::InfrastructureSystems.MultiLogger)
-
Base.convert
— Methodconvert(
+
InfrastructureSystems.TimeSeriesStorage
— TypeBase.close
— Methodclose(logger::InfrastructureSystems.MultiLogger)
+
Base.convert
— Methodconvert(
_::Type{InfrastructureSystems.QuadraticFunctionData},
data::InfrastructureSystems.LinearFunctionData
) -> InfrastructureSystems.QuadraticFunctionData
-
LinearFunctionData
to QuadraticFunctionData
Base.flush
— Methodflush(logger::InfrastructureSystems.MultiLogger)
-
Base.get
— Methodget(
+
LinearFunctionData
to QuadraticFunctionData
Base.flush
— Methodflush(logger::InfrastructureSystems.MultiLogger)
+
Base.get
— Methodget(
container::InfrastructureSystems.LazyDictFromIterator,
key
) -> Any
-
Base.zero
— Methodzero(
+
Base.zero
— Methodzero(
_::Type{InfrastructureSystems.FunctionData}
) -> InfrastructureSystems.LinearFunctionData
-
FunctionData
representing the function f(x) = 0
Base.zero
— Methodzero(
+
FunctionData
representing the function f(x) = 0
Base.zero
— Methodzero(
_::Union{InfrastructureSystems.LinearFunctionData, Type{InfrastructureSystems.LinearFunctionData}}
) -> InfrastructureSystems.LinearFunctionData
-
LinearFunctionData
representing the function f(x) = 0
InfrastructureSystems._check_transform_single_time_series
— Method_check_transform_single_time_series(
+
LinearFunctionData
representing the function f(x) = 0
InfrastructureSystems._check_transform_single_time_series
— Method_check_transform_single_time_series(
data::InfrastructureSystems.SystemData,
_::Type{InfrastructureSystems.DeterministicSingleTimeSeries},
horizon::Dates.Period,
interval::Dates.Period
) -> Vector{Any}
-
InfrastructureSystems._get_all_concrete_subtypes
— Method_get_all_concrete_subtypes(
+
InfrastructureSystems._get_all_concrete_subtypes
— Method_get_all_concrete_subtypes(
_::Type{T},
sub_types::Vector{DataType}
)
-
InfrastructureSystems._validate
— Method_validate(
+
InfrastructureSystems._validate
— Method_validate(
data::InfrastructureSystems.SystemData,
component::InfrastructureSystems.InfrastructureSystemsComponent
)
-
InfrastructureSystems.add_association!
— Methodadd_association!(
+
InfrastructureSystems.add_association!
— Methodadd_association!(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
component::InfrastructureSystems.InfrastructureSystemsComponent,
attribute::InfrastructureSystems.SupplementalAttribute
)
-
InfrastructureSystems.add_component!
— Methodadd_component!(
+
InfrastructureSystems.add_component!
— Methodadd_component!(
components::InfrastructureSystems.Components,
component::InfrastructureSystems.InfrastructureSystemsComponent;
kwargs...
)
-
InfrastructureSystems.add_component_to_subsystem!
— Methodadd_component_to_subsystem!(
+
InfrastructureSystems.add_component_to_subsystem!
— Methodadd_component_to_subsystem!(
data::InfrastructureSystems.SystemData,
subsystem_name::AbstractString,
component::InfrastructureSystems.InfrastructureSystemsComponent
)
-
InfrastructureSystems.add_metadata!
— Methodadd_metadata!(
+
InfrastructureSystems.add_metadata!
— Methodadd_metadata!(
store::InfrastructureSystems.TimeSeriesMetadataStore,
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
metadata::InfrastructureSystems.TimeSeriesMetadata
)
-
InfrastructureSystems.add_serialization_metadata!
— Methodadd_serialization_metadata!(data::Dict, _::Type{T})
-
InfrastructureSystems.add_subsystem!
— Methodadd_subsystem!(
+
InfrastructureSystems.add_serialization_metadata!
— Methodadd_serialization_metadata!(data::Dict, _::Type{T})
+
InfrastructureSystems.add_subsystem!
— Methodadd_subsystem!(
data::InfrastructureSystems.SystemData,
subsystem_name::AbstractString
)
-
InfrastructureSystems.add_time_series!
— Methodadd_time_series!(
+
InfrastructureSystems.add_time_series!
— Methodadd_time_series!(
data::InfrastructureSystems.SystemData,
components,
time_series::InfrastructureSystems.TimeSeriesData;
features...
) -> InfrastructureSystems.TimeSeriesKey
-
data::SystemData
: SystemDatacomponents
: iterable of components that will store the same time series referencetime_series::TimeSeriesData
: Any object of subtype TimeSeriesDataadd_time_series!
for each component individually with the same data because in this case, only one time series array is stored.InfrastructureSystems.add_time_series!
— Methodadd_time_series!(
+
data::SystemData
: SystemDatacomponents
: iterable of components that will store the same time series referencetime_series::TimeSeriesData
: Any object of subtype TimeSeriesDataadd_time_series!
for each component individually with the same data because in this case, only one time series array is stored.InfrastructureSystems.add_time_series!
— Methodadd_time_series!(
data::InfrastructureSystems.SystemData,
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
time_series::InfrastructureSystems.TimeSeriesData;
features...
) -> InfrastructureSystems.TimeSeriesKey
-
data::SystemData
: SystemDataowner::InfrastructureSystemsComponent
: will store the time series referencetime_series::TimeSeriesData
: Any object of subtype TimeSeriesDataInfrastructureSystems.add_time_series_from_file_metadata!
— Methodadd_time_series_from_file_metadata!(
+
data::SystemData
: SystemDataowner::InfrastructureSystemsComponent
: will store the time series referencetime_series::TimeSeriesData
: Any object of subtype TimeSeriesDataInfrastructureSystems.add_time_series_from_file_metadata!
— Methodadd_time_series_from_file_metadata!(
data::InfrastructureSystems.SystemData,
component_type::Type{<:InfrastructureSystems.InfrastructureSystemsComponent},
file_metadata::Vector{InfrastructureSystems.TimeSeriesFileMetadata};
resolution
) -> Vector{InfrastructureSystems.TimeSeriesKey}
-
data::SystemData
: systemfile_metadata::Vector{TimeSeriesFileMetadata}
: metadata for time seriesresolution::DateTime.Period=nothing
: skip time_series that don't match this resolution.InfrastructureSystems.add_time_series_from_file_metadata!
— Methodadd_time_series_from_file_metadata!(
+
data::SystemData
: systemfile_metadata::Vector{TimeSeriesFileMetadata}
: metadata for time seriesresolution::DateTime.Period=nothing
: skip time_series that don't match this resolution.InfrastructureSystems.add_time_series_from_file_metadata!
— Methodadd_time_series_from_file_metadata!(
data::InfrastructureSystems.SystemData,
::Type{T<:InfrastructureSystems.InfrastructureSystemsComponent},
metadata_file::AbstractString;
resolution
) -> Vector{InfrastructureSystems.TimeSeriesKey}
-
data::SystemData
: system::Type{T}
: type of the component associated with time series data; may be abstractmetadata_file::AbstractString
: metadata file for time series that includes an array of TimeSeriesFileMetadata instances or a vector.resolution::DateTime.Period=nothing
: skip time_series that don't match this resolution.InfrastructureSystems.assign_new_uuid_internal!
— Methodassign_new_uuid_internal!(
+
data::SystemData
: system::Type{T}
: type of the component associated with time series data; may be abstractmetadata_file::AbstractString
: metadata file for time series that includes an array of TimeSeriesFileMetadata instances or a vector.resolution::DateTime.Period=nothing
: skip time_series that don't match this resolution.InfrastructureSystems.assign_new_uuid_internal!
— Methodassign_new_uuid_internal!(
component::InfrastructureSystems.InfrastructureSystemsComponent
)
-
InfrastructureSystems.assign_new_uuid_internal!
— Methodassign_new_uuid_internal!(
+
InfrastructureSystems.assign_new_uuid_internal!
— Methodassign_new_uuid_internal!(
obj::InfrastructureSystems.InfrastructureSystemsType
)
-
InfrastructureSystems.backup_to_temp
— Methodbackup_to_temp(
+
InfrastructureSystems.backup_to_temp
— Methodbackup_to_temp(
store::InfrastructureSystems.TimeSeriesMetadataStore
) -> String
-
InfrastructureSystems.check_consistency
— Methodcheck_consistency(
+
InfrastructureSystems.check_consistency
— Methodcheck_consistency(
store::InfrastructureSystems.TimeSeriesMetadataStore,
_::Type{InfrastructureSystems.SingleTimeSeries}
) -> Tuple{Any, Any}
-
InfrastructureSystems.clear_components!
— Methodclear_components!(
+
InfrastructureSystems.clear_components!
— Methodclear_components!(
components::InfrastructureSystems.Components
)
-
InfrastructureSystems.clear_ext!
— Methodclear_ext!(
+
InfrastructureSystems.clear_ext!
— Methodclear_ext!(
obj::InfrastructureSystems.InfrastructureSystemsInternal
)
-
InfrastructureSystems.clear_metadata!
— Methodclear_metadata!(
+
InfrastructureSystems.clear_metadata!
— Methodclear_metadata!(
store::InfrastructureSystems.TimeSeriesMetadataStore
) -> SQLite.Query
-
InfrastructureSystems.clear_supplemental_attributes!
— Methodclear_supplemental_attributes!(
+
InfrastructureSystems.clear_supplemental_attributes!
— Methodclear_supplemental_attributes!(
mgr::InfrastructureSystems.SupplementalAttributeManager
)
-
InfrastructureSystems.clear_supplemental_attributes!
— Methodclear_supplemental_attributes!(
+
InfrastructureSystems.clear_supplemental_attributes!
— Methodclear_supplemental_attributes!(
data::InfrastructureSystems.SystemData
)
-
InfrastructureSystems.compare_over_fields
— Methodcompare_over_fields(cmp_op, reduce_op, init, a, b) -> Any
-
a
and b
, instances of the same concrete type, iterate over all the fields, compare a
's value to b
's using cmp_op
, and reduce to one value using reduce_op
with an initialization value of init
.InfrastructureSystems.compare_values
— Methodcompare_values(x, y; compare_uuids, exclude) -> Bool
-
x::T
: First valuey::T
: Second valuecompare_uuids::Bool = false
: Compare any UUID in the object or composed objects.InfrastructureSystems.compute_sha256
— Methodcompute_sha256(filename::AbstractString) -> String
-
InfrastructureSystems.configure_logging
— Methodconfigure_logging(
+
InfrastructureSystems.compare_over_fields
— Methodcompare_over_fields(cmp_op, reduce_op, init, a, b) -> Any
+
a
and b
, instances of the same concrete type, iterate over all the fields, compare a
's value to b
's using cmp_op
, and reduce to one value using reduce_op
with an initialization value of init
.InfrastructureSystems.compare_values
— Methodcompare_values(x, y; compare_uuids, exclude) -> Bool
+
x::T
: First valuey::T
: Second valuecompare_uuids::Bool = false
: Compare any UUID in the object or composed objects.InfrastructureSystems.compute_sha256
— Methodcompute_sha256(filename::AbstractString) -> String
+
InfrastructureSystems.configure_logging
— Methodconfigure_logging(
;
console,
console_stream,
@@ -415,375 +415,375 @@
) -> InfrastructureSystems.MultiLogger
maxlog = X
and _suppression_period = Y
where X is the max number of events that can occur in Y seconds. After the period ends, messages will no longer be suppressed. Note that if you don't specify _suppression_period
then maxlog
applies for the for the duration of your process (standard Julia logging behavior).console::Bool=true
: create console loggerconsole_stream::IOStream=stderr
: stream for console loggerconsole_level::Logging.LogLevel=Logging.Error
: level for console messagesprogress::Bool=true
: enable progress loggerfile::Bool=true
: create file loggerfilename::Union{Nothing, String}=log.txt
: log filefile_level::Logging.LogLevel=Logging.Info
: level for file messagesfile_mode::String=w+
: mode used when opening log filetracker::Union{LogEventTracker, Nothing}=LogEventTracker()
: optionally track log eventsset_global::Bool=true
: set the created logger as the global loggerlogger = configure_logging(filename="mylog.txt")
@info "hello world"
-@info "hello world" maxlog = 5 _suppression_period = 10
InfrastructureSystems.copy_h5_file
— Methodcopy_h5_file(src::AbstractString, dst::AbstractString)
-
InfrastructureSystems.copy_time_series!
— Methodcopy_time_series!(
+@info "hello world" maxlog = 5 _suppression_period = 10
InfrastructureSystems.copy_h5_file
— Methodcopy_h5_file(src::AbstractString, dst::AbstractString)
+
InfrastructureSystems.copy_time_series!
— Methodcopy_time_series!(
dst::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
src::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute};
name_mapping,
scaling_factor_multiplier_mapping
)
-
dst::TimeSeriesOwners
: Destination ownersrc::TimeSeriesOwners
: Source ownername_mapping::Dict = nothing
: Optionally map src names to different dst names. If provided and src has a timeseries with a name not present in namemapping, that timeseries will not copied. If namemapping is nothing then all time_series will be copied with src's names.scaling_factor_multiplier_mapping::Dict = nothing
: Optionally map src multipliers to different dst multipliers. If provided and src has a timeseries with a multiplier not present in scalingfactormultipliermapping, that timeseries will not copied. If scalingfactormultipliermapping is nothing then all time_series will be copied with src's multipliers.InfrastructureSystems.deserialize
— Methoddeserialize(
+
dst::TimeSeriesOwners
: Destination ownersrc::TimeSeriesOwners
: Source ownername_mapping::Dict = nothing
: Optionally map src names to different dst names. If provided and src has a timeseries with a name not present in namemapping, that timeseries will not copied. If namemapping is nothing then all time_series will be copied with src's names.scaling_factor_multiplier_mapping::Dict = nothing
: Optionally map src multipliers to different dst multipliers. If provided and src has a timeseries with a multiplier not present in scalingfactormultipliermapping, that timeseries will not copied. If scalingfactormultipliermapping is nothing then all time_series will be copied with src's multipliers.InfrastructureSystems.deserialize
— Methoddeserialize(
_::Type{T<:InfrastructureSystems.InfrastructureSystemsType},
data::Dict
-) -> InfrastructureSystems.ComponentUUIDs
-
InfrastructureSystems.double_equals_from_fields
— Methoddouble_equals_from_fields(a, b) -> Any
-
==
values of all the fields in a
and b
InfrastructureSystems.drop_table
— Methoddrop_table(
+) -> InfrastructureSystems.SystemData
+
InfrastructureSystems.double_equals_from_fields
— Methoddouble_equals_from_fields(a, b) -> Any
+
==
values of all the fields in a
and b
InfrastructureSystems.drop_table
— Methoddrop_table(
associations::InfrastructureSystems.SupplementalAttributeAssociations
)
-
InfrastructureSystems.empty_group_levels!
— Methodempty_group_levels!(
+
InfrastructureSystems.empty_group_levels!
— Methodempty_group_levels!(
logger::InfrastructureSystems.MultiLogger
)
-
InfrastructureSystems.execute
— Methodexecute(
+
InfrastructureSystems.execute
— Methodexecute(
db::SQLite.DB,
query::AbstractString,
params::Union{Nothing, Vector},
log_group::Symbol
) -> SQLite.Query
-
InfrastructureSystems.execute_count
— Methodexecute_count(
+
InfrastructureSystems.execute_count
— Methodexecute_count(
db::SQLite.DB,
query::AbstractString,
params::Union{Nothing, Vector},
log_group::Symbol
) -> Any
-
InfrastructureSystems.from
— Methodfrom(
+
InfrastructureSystems.from
— Methodfrom(
time_series::InfrastructureSystems.SingleTimeSeries,
timestamp
) -> InfrastructureSystems.SingleTimeSeries
-
InfrastructureSystems.from_file
— Methodfrom_file(
+
InfrastructureSystems.from_file
— Methodfrom_file(
::Type{InfrastructureSystems.Hdf5TimeSeriesStorage},
filename::AbstractString;
read_only,
directory
) -> InfrastructureSystems.Hdf5TimeSeriesStorage
-
InfrastructureSystems.from_h5_file
— Methodfrom_h5_file(
+
InfrastructureSystems.from_h5_file
— Methodfrom_h5_file(
_::Type{InfrastructureSystems.TimeSeriesMetadataStore},
src::AbstractString,
directory
) -> InfrastructureSystems.TimeSeriesMetadataStore
-
InfrastructureSystems.from_json
— Methodfrom_json(
+
InfrastructureSystems.from_json
— Methodfrom_json(
_::Type{T<:InfrastructureSystems.InfrastructureSystemsType},
filename::String
) -> Any
-
InfrastructureSystems.from_json
— Methodfrom_json(
+
InfrastructureSystems.from_json
— Methodfrom_json(
io::Union{IO, String},
_::Type{T<:InfrastructureSystems.InfrastructureSystemsType}
) -> InfrastructureSystems.TestComponent
-
InfrastructureSystems.generate_struct_file
— Methodgenerate_struct_file(
+
InfrastructureSystems.generate_struct_file
— Methodgenerate_struct_file(
definition::InfrastructureSystems.StructDefinition;
filename,
output_directory
)
-
StructDefinition
.StructDefinition
and StructField
for descriptions of the available fields.definition::StructDefinition
: Defines the struct and all fields.filename::AbstractString
: Add the struct definition to this JSON file. Defaults to src/descriptors/structs.json
output_directory::AbstractString
: Generate the files in this directory. Defaults to src/generated
InfrastructureSystems.generate_struct_files
— Methodgenerate_struct_files(
+
StructDefinition
.StructDefinition
and StructField
for descriptions of the available fields.definition::StructDefinition
: Defines the struct and all fields.filename::AbstractString
: Add the struct definition to this JSON file. Defaults to src/descriptors/structs.json
output_directory::AbstractString
: Generate the files in this directory. Defaults to src/generated
InfrastructureSystems.generate_struct_files
— Methodgenerate_struct_files(
definitions;
filename,
output_directory
)
-
StructDefinition
instances.StructDefinition
and StructField
for descriptions of the available fields.definitions
: Defines the structs and all fields.filename::AbstractString
: Add the struct definition to this JSON file. Defaults to src/descriptors/power_system_structs.json
output_directory::AbstractString
: Generate the files in this directory. Defaults to src/generated
InfrastructureSystems.get_abstract_subtypes
— Methodget_abstract_subtypes(_::Type{T}) -> Vector
-
InfrastructureSystems.get_all_concrete_subtypes
— Methodget_all_concrete_subtypes(_::Type{T}) -> Any
-
InfrastructureSystems.get_assigned_subsystems
— Methodget_assigned_subsystems(
+
StructDefinition
instances.StructDefinition
and StructField
for descriptions of the available fields.definitions
: Defines the structs and all fields.filename::AbstractString
: Add the struct definition to this JSON file. Defaults to src/descriptors/power_system_structs.json
output_directory::AbstractString
: Generate the files in this directory. Defaults to src/generated
InfrastructureSystems.get_abstract_subtypes
— Methodget_abstract_subtypes(_::Type{T}) -> Vector
+
InfrastructureSystems.get_all_concrete_subtypes
— Methodget_all_concrete_subtypes(_::Type{T}) -> Any
+
InfrastructureSystems.get_assigned_subsystems
— Methodget_assigned_subsystems(
data::InfrastructureSystems.SystemData,
component::InfrastructureSystems.InfrastructureSystemsComponent
) -> Vector
-
InfrastructureSystems.get_attribute_counts_by_type
— Methodget_attribute_counts_by_type(
+
InfrastructureSystems.get_attribute_counts_by_type
— Methodget_attribute_counts_by_type(
associations::InfrastructureSystems.SupplementalAttributeAssociations
) -> Vector
-
InfrastructureSystems.get_attribute_summary_table
— Methodget_attribute_summary_table(
+
InfrastructureSystems.get_attribute_summary_table
— Methodget_attribute_summary_table(
associations::InfrastructureSystems.SupplementalAttributeAssociations
) -> DataFrames.DataFrame
-
InfrastructureSystems.get_component
— Methodget_component(
+
InfrastructureSystems.get_component
— Methodget_component(
_::Type{T<:InfrastructureSystems.InfrastructureSystemsComponent},
components::InfrastructureSystems.Components,
name::AbstractString
) -> Union{Nothing, InfrastructureSystems.InfrastructureSystemsComponent}
-
get_components_by_name
for abstract types with non-unique names across subtypes.InfrastructureSystems.get_components
— Methodget_components(
+
get_components_by_name
for abstract types with non-unique names across subtypes.InfrastructureSystems.get_components
— Methodget_components(
::Type{T<:InfrastructureSystems.InfrastructureSystemsComponent},
components::InfrastructureSystems.Components;
component_uuids
) -> InfrastructureSystems.FlattenIteratorWrapper{T, I} where {T<:InfrastructureSystems.InfrastructureSystemsComponent, I<:(Vector)}
-
T
: component typecomponents::Components
: Components of the systemfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts a component of type T and returns a Bool. Apply this function to each component and only return components where the result is true.iterate_components
InfrastructureSystems.get_components_by_name
— Methodget_components_by_name(
+
T
: component typecomponents::Components
: Components of the systemfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts a component of type T and returns a Bool. Apply this function to each component and only return components where the result is true.iterate_components
InfrastructureSystems.get_components_by_name
— Methodget_components_by_name(
_::Type{T<:InfrastructureSystems.InfrastructureSystemsComponent},
components::InfrastructureSystems.Components,
name::AbstractString
) -> Vector{T} where T<:InfrastructureSystems.InfrastructureSystemsComponent
-
get_component
if the concrete type is known.InfrastructureSystems.get_concrete_subtypes
— Methodget_concrete_subtypes(_::Type{T}) -> Vector
-
InfrastructureSystems.get_count
— Methodget_count(
+
get_component
if the concrete type is known.InfrastructureSystems.get_concrete_subtypes
— Methodget_concrete_subtypes(_::Type{T}) -> Vector
+
InfrastructureSystems.get_count
— Methodget_count(
value::InfrastructureSystems.DeterministicMetadata
) -> Int64
-
DeterministicMetadata
count
.InfrastructureSystems.get_count
— Methodget_count(
+
DeterministicMetadata
count
.InfrastructureSystems.get_count
— Methodget_count(
value::InfrastructureSystems.DeterministicSingleTimeSeries
) -> Int64
-
DeterministicSingleTimeSeries
count
.InfrastructureSystems.get_count
— Methodget_count(
+
DeterministicSingleTimeSeries
count
.InfrastructureSystems.get_count
— Methodget_count(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Int64
-
ProbabilisticMetadata
count
.InfrastructureSystems.get_count
— Methodget_count(
+
ProbabilisticMetadata
count
.InfrastructureSystems.get_count
— Methodget_count(
value::InfrastructureSystems.ScenariosMetadata
) -> Int64
-
ScenariosMetadata
count
.InfrastructureSystems.get_data
— Methodget_data(
+
ScenariosMetadata
count
.InfrastructureSystems.get_data
— Methodget_data(
value::InfrastructureSystems.Deterministic
) -> DataStructures.SortedDict
-
Deterministic
data
.InfrastructureSystems.get_data
— Methodget_data(
+
Deterministic
data
.InfrastructureSystems.get_data
— Methodget_data(
value::InfrastructureSystems.Probabilistic
) -> DataStructures.SortedDict
-
Probabilistic
data
.InfrastructureSystems.get_data
— Methodget_data(
+
Probabilistic
data
.InfrastructureSystems.get_data
— Methodget_data(
value::InfrastructureSystems.Scenarios
) -> DataStructures.SortedDict
-
Scenarios
data
.InfrastructureSystems.get_data
— Methodget_data(
+
Scenarios
data
.InfrastructureSystems.get_data
— Methodget_data(
value::InfrastructureSystems.SingleTimeSeries
) -> TimeSeries.TimeArray
-
SingleTimeSeries
data
.InfrastructureSystems.get_data_type
— Methodget_data_type(
+
SingleTimeSeries
data
.InfrastructureSystems.get_data_type
— Methodget_data_type(
ts::InfrastructureSystems.TimeSeriesData
) -> Any
-
eval
on arbitrary code stored in HDF dataset.InfrastructureSystems.get_ext
— Methodget_ext(
+
eval
on arbitrary code stored in HDF dataset.InfrastructureSystems.get_ext
— Methodget_ext(
obj::InfrastructureSystems.InfrastructureSystemsInternal
) -> Union{Nothing, Dict{String, Any}}
-
InfrastructureSystems.get_features
— Methodget_features(
+
InfrastructureSystems.get_features
— Methodget_features(
value::InfrastructureSystems.DeterministicMetadata
) -> Dict{String, Union{Bool, Int64, String}}
-
DeterministicMetadata
features
.InfrastructureSystems.get_features
— Methodget_features(
+
DeterministicMetadata
features
.InfrastructureSystems.get_features
— Methodget_features(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Dict{String, Union{Bool, Int64, String}}
-
ProbabilisticMetadata
features
.InfrastructureSystems.get_features
— Methodget_features(
+
ProbabilisticMetadata
features
.InfrastructureSystems.get_features
— Methodget_features(
value::InfrastructureSystems.ScenariosMetadata
) -> Dict{String, Union{Bool, Int64, String}}
-
ScenariosMetadata
features
.InfrastructureSystems.get_features
— Methodget_features(
+
ScenariosMetadata
features
.InfrastructureSystems.get_features
— Methodget_features(
value::InfrastructureSystems.SingleTimeSeriesMetadata
) -> Dict{String, Union{Bool, Int64, String}}
-
SingleTimeSeriesMetadata
features
.InfrastructureSystems.get_group_level
— Methodget_group_level(
+
SingleTimeSeriesMetadata
features
.InfrastructureSystems.get_group_level
— Methodget_group_level(
logger::InfrastructureSystems.MultiLogger,
group::Symbol
) -> Union{Nothing, Base.CoreLogging.LogLevel}
-
group
is not stored.InfrastructureSystems.get_group_levels
— Methodget_group_levels(
+
group
is not stored.InfrastructureSystems.get_group_levels
— Methodget_group_levels(
logger::InfrastructureSystems.MultiLogger
) -> Dict{Symbol, Base.CoreLogging.LogLevel}
-
InfrastructureSystems.get_horizon
— Methodget_horizon(
+
InfrastructureSystems.get_horizon
— Methodget_horizon(
value::InfrastructureSystems.DeterministicMetadata
) -> Dates.Period
-
DeterministicMetadata
horizon
.InfrastructureSystems.get_horizon
— Methodget_horizon(
+
DeterministicMetadata
horizon
.InfrastructureSystems.get_horizon
— Methodget_horizon(
value::InfrastructureSystems.DeterministicSingleTimeSeries
) -> Dates.Period
-
DeterministicSingleTimeSeries
horizon
.InfrastructureSystems.get_horizon
— Methodget_horizon(
+
DeterministicSingleTimeSeries
horizon
.InfrastructureSystems.get_horizon
— Methodget_horizon(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Dates.Period
-
ProbabilisticMetadata
horizon
.InfrastructureSystems.get_horizon
— Methodget_horizon(
+
ProbabilisticMetadata
horizon
.InfrastructureSystems.get_horizon
— Methodget_horizon(
value::InfrastructureSystems.ScenariosMetadata
) -> Dates.Period
-
ScenariosMetadata
horizon
.InfrastructureSystems.get_initial_times
— Methodget_initial_times(
+
ScenariosMetadata
horizon
.InfrastructureSystems.get_initial_times
— Methodget_initial_times(
f::InfrastructureSystems.Forecast
) -> DataStructures.SDMKeyIteration{T} where T<:DataStructures.SortedDict
-
InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
+
InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
value::InfrastructureSystems.DeterministicMetadata
) -> Dates.DateTime
-
DeterministicMetadata
initial_timestamp
.InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
+
DeterministicMetadata
initial_timestamp
.InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
value::InfrastructureSystems.DeterministicSingleTimeSeries
) -> Dates.DateTime
-
DeterministicSingleTimeSeries
initial_timestamp
.InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
+
DeterministicSingleTimeSeries
initial_timestamp
.InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Dates.DateTime
-
ProbabilisticMetadata
initial_timestamp
.InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
+
ProbabilisticMetadata
initial_timestamp
.InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
value::InfrastructureSystems.ScenariosMetadata
) -> Dates.DateTime
-
ScenariosMetadata
initial_timestamp
.InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
+
ScenariosMetadata
initial_timestamp
.InfrastructureSystems.get_initial_timestamp
— Methodget_initial_timestamp(
value::InfrastructureSystems.SingleTimeSeriesMetadata
) -> Dates.DateTime
-
SingleTimeSeriesMetadata
initial_timestamp
.InfrastructureSystems.get_internal
— Methodget_internal(
+
SingleTimeSeriesMetadata
initial_timestamp
.InfrastructureSystems.get_internal
— Methodget_internal(
value::InfrastructureSystems.DeterministicMetadata
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
DeterministicMetadata
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
+
DeterministicMetadata
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
value::InfrastructureSystems.Deterministic
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
Deterministic
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
+
Deterministic
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
value::InfrastructureSystems.ProbabilisticMetadata
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
ProbabilisticMetadata
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
+
ProbabilisticMetadata
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
value::InfrastructureSystems.Probabilistic
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
Probabilistic
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
+
Probabilistic
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
value::InfrastructureSystems.ScenariosMetadata
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
ScenariosMetadata
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
+
ScenariosMetadata
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
value::InfrastructureSystems.Scenarios
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
Scenarios
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
+
Scenarios
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
value::InfrastructureSystems.SingleTimeSeriesMetadata
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
SingleTimeSeriesMetadata
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
+
SingleTimeSeriesMetadata
internal
.InfrastructureSystems.get_internal
— Methodget_internal(
value::InfrastructureSystems.SingleTimeSeries
) -> InfrastructureSystems.InfrastructureSystemsInternal
-
SingleTimeSeries
internal
.InfrastructureSystems.get_interval
— Methodget_interval(
+
SingleTimeSeries
internal
.InfrastructureSystems.get_interval
— Methodget_interval(
value::InfrastructureSystems.DeterministicMetadata
) -> Dates.Period
-
DeterministicMetadata
interval
.InfrastructureSystems.get_interval
— Methodget_interval(
+
DeterministicMetadata
interval
.InfrastructureSystems.get_interval
— Methodget_interval(
value::InfrastructureSystems.DeterministicSingleTimeSeries
) -> Dates.Period
-
DeterministicSingleTimeSeries
interval
.InfrastructureSystems.get_interval
— Methodget_interval(
+
DeterministicSingleTimeSeries
interval
.InfrastructureSystems.get_interval
— Methodget_interval(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Dates.Period
-
ProbabilisticMetadata
interval
.InfrastructureSystems.get_interval
— Methodget_interval(
+
ProbabilisticMetadata
interval
.InfrastructureSystems.get_interval
— Methodget_interval(
value::InfrastructureSystems.ScenariosMetadata
) -> Dates.Period
-
ScenariosMetadata
interval
.InfrastructureSystems.get_length
— Methodget_length(
+
ScenariosMetadata
interval
.InfrastructureSystems.get_length
— Methodget_length(
value::InfrastructureSystems.SingleTimeSeriesMetadata
) -> Int64
-
SingleTimeSeriesMetadata
length
.InfrastructureSystems.get_log_events
— Methodget_log_events(
+
SingleTimeSeriesMetadata
length
.InfrastructureSystems.get_log_events
— Methodget_log_events(
tracker::InfrastructureSystems.LogEventTracker,
level::Base.CoreLogging.LogLevel
) -> Union{Base.ValueIterator{Dict{Symbol, InfrastructureSystems.LogEvent}}, Vector{Any}}
-
InfrastructureSystems.get_metadata
— Methodget_metadata(
+
InfrastructureSystems.get_metadata
— Methodget_metadata(
store::InfrastructureSystems.TimeSeriesMetadataStore,
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
time_series_type::Type{<:InfrastructureSystems.TimeSeriesData},
name::String;
features...
) -> Any
-
InfrastructureSystems.get_name
— Methodget_name(
+
InfrastructureSystems.get_name
— Methodget_name(
value::InfrastructureSystems.DeterministicMetadata
) -> String
-
DeterministicMetadata
name
.InfrastructureSystems.get_name
— Methodget_name(
+
DeterministicMetadata
name
.InfrastructureSystems.get_name
— Methodget_name(
value::InfrastructureSystems.Deterministic
) -> String
-
Deterministic
name
.InfrastructureSystems.get_name
— Methodget_name(
+
Deterministic
name
.InfrastructureSystems.get_name
— Methodget_name(
value::InfrastructureSystems.ProbabilisticMetadata
) -> String
-
ProbabilisticMetadata
name
.InfrastructureSystems.get_name
— Methodget_name(
+
ProbabilisticMetadata
name
.InfrastructureSystems.get_name
— Methodget_name(
value::InfrastructureSystems.Probabilistic
) -> String
-
Probabilistic
name
.InfrastructureSystems.get_name
— Methodget_name(
+
Probabilistic
name
.InfrastructureSystems.get_name
— Methodget_name(
value::InfrastructureSystems.ScenariosMetadata
) -> String
-
ScenariosMetadata
name
.InfrastructureSystems.get_name
— Methodget_name(value::InfrastructureSystems.Scenarios) -> String
-
Scenarios
name
.InfrastructureSystems.get_name
— Methodget_name(
+
ScenariosMetadata
name
.InfrastructureSystems.get_name
— Methodget_name(value::InfrastructureSystems.Scenarios) -> String
+
Scenarios
name
.InfrastructureSystems.get_name
— Methodget_name(
value::InfrastructureSystems.SingleTimeSeriesMetadata
) -> String
-
SingleTimeSeriesMetadata
name
.InfrastructureSystems.get_name
— Methodget_name(
+
SingleTimeSeriesMetadata
name
.InfrastructureSystems.get_name
— Methodget_name(
value::InfrastructureSystems.SingleTimeSeries
) -> String
-
SingleTimeSeries
name
.InfrastructureSystems.get_next_time
— Methodget_next_time(
+
SingleTimeSeries
name
.InfrastructureSystems.get_next_time
— Methodget_next_time(
cache::InfrastructureSystems.TimeSeriesCache
) -> Any
-
get_next_time_series_array!
.nothing
if all data has been read.InfrastructureSystems.get_next_time_series_array!
— Methodget_next_time_series_array!(
+
get_next_time_series_array!
.nothing
if all data has been read.InfrastructureSystems.get_next_time_series_array!
— Methodget_next_time_series_array!(
cache::InfrastructureSystems.TimeSeriesCache
) -> Any
nothing
when all data has been read. Call reset!
to restart. Call get_next_time
to check the start time.cache::StaticTimeSeriesCache
: cached instancecache = ForecastCache(Deterministic, component, "max_active_power")
window1 = get_next_time_series_array!(cache)
-window2 = get_next_time_series_array!(cache)
InfrastructureSystems.get_num_attributes
— Methodget_num_attributes(
+window2 = get_next_time_series_array!(cache)
InfrastructureSystems.get_num_attributes
— Methodget_num_attributes(
associations::InfrastructureSystems.SupplementalAttributeAssociations
) -> Any
-
InfrastructureSystems.get_num_components_with_attributes
— Methodget_num_components_with_attributes(
+
InfrastructureSystems.get_num_components_with_attributes
— Methodget_num_components_with_attributes(
associations::InfrastructureSystems.SupplementalAttributeAssociations
) -> Any
-
InfrastructureSystems.get_num_steps
— Methodget_num_steps(
+
InfrastructureSystems.get_num_steps
— Methodget_num_steps(
_::Type{T<:InfrastructureSystems.TimeSeriesFileFormat},
file::CSV.File,
period::AbstractArray
) -> Any
-
InfrastructureSystems.get_num_steps
— Methodget_num_steps(
+
InfrastructureSystems.get_num_steps
— Methodget_num_steps(
_::Type{T<:InfrastructureSystems.TimeSeriesFormatPeriodAsHeader},
file::CSV.File,
period::AbstractArray
) -> Any
-
InfrastructureSystems.get_num_steps
— Methodget_num_steps(
+
InfrastructureSystems.get_num_steps
— Methodget_num_steps(
_::Type{T<:Union{InfrastructureSystems.TimeSeriesFormatDateTimeAsColumn, InfrastructureSystems.TimeSeriesFormatPeriodAsColumn}},
file::CSV.File,
period::AbstractArray
) -> Any
-
InfrastructureSystems.get_num_subsystems
— Methodget_num_subsystems(
+
InfrastructureSystems.get_num_subsystems
— Methodget_num_subsystems(
data::InfrastructureSystems.SystemData
) -> Int64
-
InfrastructureSystems.get_num_time_series
— Methodget_num_time_series(
+
InfrastructureSystems.get_num_time_series
— Methodget_num_time_series(
store::InfrastructureSystems.TimeSeriesMetadataStore
) -> Any
-
InfrastructureSystems.get_percentiles
— Methodget_percentiles(
+
InfrastructureSystems.get_percentiles
— Methodget_percentiles(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Vector{Float64}
-
ProbabilisticMetadata
percentiles
.InfrastructureSystems.get_percentiles
— Methodget_percentiles(
+
ProbabilisticMetadata
percentiles
.InfrastructureSystems.get_percentiles
— Methodget_percentiles(
value::InfrastructureSystems.Probabilistic
) -> Vector{Float64}
-
Probabilistic
percentiles
.InfrastructureSystems.get_period_columns
— Methodget_period_columns(
+
Probabilistic
percentiles
.InfrastructureSystems.get_period_columns
— Methodget_period_columns(
_::Type{InfrastructureSystems.TimeSeriesFormatPeriodAsColumn},
file::CSV.File
) -> Vector{Symbol}
-
InfrastructureSystems.get_points
— Methodget_points(
+
InfrastructureSystems.get_points
— Methodget_points(
data::InfrastructureSystems.PiecewiseLinearData
) -> Vector{@NamedTuple{x::Float64, y::Float64}}
-
InfrastructureSystems.get_raw_data_type
— FunctionInfrastructureSystems.get_resolution
— Methodget_resolution(
+
InfrastructureSystems.get_raw_data_type
— FunctionInfrastructureSystems.get_resolution
— Methodget_resolution(
value::InfrastructureSystems.DeterministicMetadata
) -> Dates.Period
-
DeterministicMetadata
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
+
DeterministicMetadata
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
value::InfrastructureSystems.Deterministic
) -> Dates.Period
-
Deterministic
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
+
Deterministic
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Dates.Period
-
ProbabilisticMetadata
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
+
ProbabilisticMetadata
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
value::InfrastructureSystems.Probabilistic
) -> Dates.Period
-
Probabilistic
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
+
Probabilistic
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
value::InfrastructureSystems.ScenariosMetadata
) -> Dates.Period
-
ScenariosMetadata
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
+
ScenariosMetadata
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
value::InfrastructureSystems.Scenarios
) -> Dates.Period
-
Scenarios
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
+
Scenarios
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
value::InfrastructureSystems.SingleTimeSeriesMetadata
) -> Dates.Period
-
SingleTimeSeriesMetadata
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
+
SingleTimeSeriesMetadata
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(
value::InfrastructureSystems.SingleTimeSeries
) -> Dates.Period
-
SingleTimeSeries
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(ts::TimeSeries.TimeArray) -> Any
-
InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
+
SingleTimeSeries
resolution
.InfrastructureSystems.get_resolution
— Methodget_resolution(ts::TimeSeries.TimeArray) -> Any
+
InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
value::InfrastructureSystems.DeterministicMetadata
) -> Union{Nothing, Function}
-
DeterministicMetadata
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
+
DeterministicMetadata
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
value::InfrastructureSystems.Deterministic
) -> Union{Nothing, Function}
-
Deterministic
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
+
Deterministic
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Union{Nothing, Function}
-
ProbabilisticMetadata
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
+
ProbabilisticMetadata
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
value::InfrastructureSystems.Probabilistic
) -> Union{Nothing, Function}
-
Probabilistic
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
+
Probabilistic
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
value::InfrastructureSystems.ScenariosMetadata
) -> Union{Nothing, Function}
-
ScenariosMetadata
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
+
ScenariosMetadata
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
value::InfrastructureSystems.Scenarios
) -> Union{Nothing, Function}
-
Scenarios
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
+
Scenarios
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
value::InfrastructureSystems.SingleTimeSeriesMetadata
) -> Union{Nothing, Function}
-
SingleTimeSeriesMetadata
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
+
SingleTimeSeriesMetadata
scaling_factor_multiplier
.InfrastructureSystems.get_scaling_factor_multiplier
— Methodget_scaling_factor_multiplier(
value::InfrastructureSystems.SingleTimeSeries
) -> Union{Nothing, Function}
-
SingleTimeSeries
scaling_factor_multiplier
.InfrastructureSystems.get_scenario_count
— Methodget_scenario_count(
+
SingleTimeSeries
scaling_factor_multiplier
.InfrastructureSystems.get_scenario_count
— Methodget_scenario_count(
value::InfrastructureSystems.ScenariosMetadata
) -> Int64
-
ScenariosMetadata
scenario_count
.InfrastructureSystems.get_scenario_count
— Methodget_scenario_count(
+
ScenariosMetadata
scenario_count
.InfrastructureSystems.get_scenario_count
— Methodget_scenario_count(
value::InfrastructureSystems.Scenarios
) -> Int64
-
Scenarios
scenario_count
.InfrastructureSystems.get_serialization_metadata
— Methodget_serialization_metadata(data::Dict) -> Any
-
InfrastructureSystems.get_single_time_series
— Methodget_single_time_series(
+
Scenarios
scenario_count
.InfrastructureSystems.get_serialization_metadata
— Methodget_serialization_metadata(data::Dict) -> Any
+
InfrastructureSystems.get_single_time_series
— Methodget_single_time_series(
value::InfrastructureSystems.DeterministicSingleTimeSeries
) -> InfrastructureSystems.SingleTimeSeries
-
DeterministicSingleTimeSeries
single_time_series
.InfrastructureSystems.get_slopes
— Methodget_slopes(
+
DeterministicSingleTimeSeries
single_time_series
.InfrastructureSystems.get_slopes
— Methodget_slopes(
pwl::InfrastructureSystems.PiecewiseLinearData
) -> Vector{Float64}
-
InfrastructureSystems.get_subsystem_components
— Methodget_subsystem_components(
+
InfrastructureSystems.get_subsystem_components
— Methodget_subsystem_components(
data::InfrastructureSystems.SystemData,
subsystem_name::AbstractString
) -> Base.Generator{Set{Base.UUID}, InfrastructureSystems.var"#421#422"{InfrastructureSystems.SystemData}}
-
InfrastructureSystems.get_subsystems
— Methodget_subsystems(
+
InfrastructureSystems.get_subsystems
— Methodget_subsystems(
data::InfrastructureSystems.SystemData
) -> Base.KeySet{String, Dict{String, Set{Base.UUID}}}
-
InfrastructureSystems.get_supplemental_attributes
— Methodget_supplemental_attributes(
+
InfrastructureSystems.get_supplemental_attributes
— Methodget_supplemental_attributes(
filter_func::Function,
_::Type{T<:InfrastructureSystems.SupplementalAttribute},
mgr::InfrastructureSystems.SupplementalAttributeManager
) -> InfrastructureSystems.FlattenIteratorWrapper{T, I} where {T<:InfrastructureSystems.SupplementalAttribute, I<:(Vector)}
-
T
: supplemental_attribute typemgr::SupplementalAttributeManager
: SupplementalAttributeManager in the systemfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts a component of type T and returns a Bool. Apply this function to each component and only return components where the result is true.InfrastructureSystems.get_supplemental_attributes
— Methodget_supplemental_attributes(
+
T
: supplemental_attribute typemgr::SupplementalAttributeManager
: SupplementalAttributeManager in the systemfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts a component of type T and returns a Bool. Apply this function to each component and only return components where the result is true.InfrastructureSystems.get_supplemental_attributes
— Methodget_supplemental_attributes(
_::Type{T<:InfrastructureSystems.SupplementalAttribute},
component::InfrastructureSystems.InfrastructureSystemsComponent
) -> Any
-
T
: supplemental_attribute typesupplemental_attributes::SupplementalAttributes
: SupplementalAttributes in the systemfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts a component of type T and returns a Bool. Apply this function to each component and only return components where the result is true.InfrastructureSystems.get_time_series
— Functionget_time_series(
+
T
: supplemental_attribute typesupplemental_attributes::SupplementalAttributes
: SupplementalAttributes in the systemfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts a component of type T and returns a Bool. Apply this function to each component and only return components where the result is true.InfrastructureSystems.get_time_series
— Functionget_time_series(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
key::InfrastructureSystems.TimeSeriesKey
) -> Any
@@ -805,7 +805,7 @@
len::Union{Nothing, Int64},
count::Union{Nothing, Int64}
) -> Any
-
owner::TimeSeriesOwners
: Component or attribute containing the time serieskey::TimeSeriesKey
: the time series' keystart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If the time series is a subtype of Forecast then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length in the time dimension. If nothing, use the entire length.count::Union{Nothing, Int} = nothing
: Only applicable to subtypes of Forecast. Number of forecast windows starting at start_time
to return. Defaults to all available.features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsInfrastructureSystems.get_time_series
— Methodget_time_series(
+
owner::TimeSeriesOwners
: Component or attribute containing the time serieskey::TimeSeriesKey
: the time series' keystart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If the time series is a subtype of Forecast then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length in the time dimension. If nothing, use the entire length.count::Union{Nothing, Int} = nothing
: Only applicable to subtypes of Forecast. Number of forecast windows starting at start_time
to return. Defaults to all available.features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsInfrastructureSystems.get_time_series
— Methodget_time_series(
::Type{T<:InfrastructureSystems.TimeSeriesData},
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
name::AbstractString;
@@ -814,7 +814,7 @@
count,
features...
) -> Any
-
start_time
and len
if you only need a subset of data.::Type{T}
: Concrete subtype of TimeSeriesData
to returnowner::TimeSeriesOwners
: Component or attribute containing the time seriesname::AbstractString
: name of time seriesstart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If T is a subtype of Forecast then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length in the time dimension. If nothing, use the entire length.count::Union{Nothing, Int} = nothing
: Only applicable to subtypes of Forecast. Number of forecast windows starting at start_time
to return. Defaults to all available.features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsget_time_series_array
, get_time_series_values
.InfrastructureSystems.get_time_series_array
— Functionget_time_series_array(
+
start_time
and len
if you only need a subset of data.::Type{T}
: Concrete subtype of TimeSeriesData
to returnowner::TimeSeriesOwners
: Component or attribute containing the time seriesname::AbstractString
: name of time seriesstart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If T is a subtype of Forecast then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length in the time dimension. If nothing, use the entire length.count::Union{Nothing, Int} = nothing
: Only applicable to subtypes of Forecast. Number of forecast windows starting at start_time
to return. Defaults to all available.features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsget_time_series_array
, get_time_series_values
.InfrastructureSystems.get_time_series_array
— Functionget_time_series_array(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
time_series::InfrastructureSystems.StaticTimeSeries;
...
@@ -826,18 +826,18 @@
len,
ignore_scaling_factors
) -> Any
-
TimeSeries.TimeArray
from a cached StaticTimeSeries
instance.owner::TimeSeriesOwners
: Component or attribute containing the time seriestime_series::StaticTimeSeries
: subtype of StaticTimeSeries
(e.g., SingleTimeSeries
)start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp to retrieve. If nothing, use the initial_timestamp
of the time series.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire lengthignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
get_time_series_values
, get_time_series_timestamps
, StaticTimeSeriesCache
.InfrastructureSystems.get_time_series_array!
— Methodget_time_series_array!(
+
TimeSeries.TimeArray
from a cached StaticTimeSeries
instance.owner::TimeSeriesOwners
: Component or attribute containing the time seriestime_series::StaticTimeSeries
: subtype of StaticTimeSeries
(e.g., SingleTimeSeries
)start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp to retrieve. If nothing, use the initial_timestamp
of the time series.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire lengthignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
get_time_series_values
, get_time_series_timestamps
, StaticTimeSeriesCache
.InfrastructureSystems.get_time_series_array!
— Methodget_time_series_array!(
cache::InfrastructureSystems.TimeSeriesCache,
timestamp::Dates.DateTime
) -> Any
-
cache::StaticTimeSeriesCache
: cached instancetimestamp::Dates.DateTime
: starting timestamp for the time series arrayInfrastructureSystems.get_time_series_array
— Methodget_time_series_array(
+
cache::StaticTimeSeriesCache
: cached instancetimestamp::Dates.DateTime
: starting timestamp for the time series arrayInfrastructureSystems.get_time_series_array
— Methodget_time_series_array(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
forecast::InfrastructureSystems.Forecast,
start_time::Dates.DateTime;
len,
ignore_scaling_factors
) -> Any
-
TimeSeries.TimeArray
for one forecast window from a cached Forecast
instanceowner::TimeSeriesOwners
: Component or attribute containing the time seriesforecast::Forecast
: a concrete subtype of Forecast
start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp of one of the forecast windowslen::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.ignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
get_time_series_values
, get_time_series_timestamps
, ForecastCache
.InfrastructureSystems.get_time_series_array
— Methodget_time_series_array(
+
TimeSeries.TimeArray
for one forecast window from a cached Forecast
instanceowner::TimeSeriesOwners
: Component or attribute containing the time seriesforecast::Forecast
: a concrete subtype of Forecast
start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp of one of the forecast windowslen::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.ignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
get_time_series_values
, get_time_series_timestamps
, ForecastCache
.InfrastructureSystems.get_time_series_array
— Methodget_time_series_array(
::Type{T<:InfrastructureSystems.TimeSeriesData},
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
name::AbstractString;
@@ -846,24 +846,24 @@
ignore_scaling_factors,
features...
) -> Any
-
TimeSeries.TimeArray
from storage for the given time series parameters.start_time
and len
if you only need a subset of data.::Type{T}
: the type of time series (a concrete subtype of TimeSeriesData
)owner::TimeSeriesOwners
: Component or attribute containing the time seriesname::AbstractString
: name of time seriesstart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If T is a subtype of Forecast
then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.ignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsget_time_series_values
, get_time_series_timestamps
, get_time_series
InfrastructureSystems.get_time_series_counts
— Methodget_time_series_counts(
+
TimeSeries.TimeArray
from storage for the given time series parameters.start_time
and len
if you only need a subset of data.::Type{T}
: the type of time series (a concrete subtype of TimeSeriesData
)owner::TimeSeriesOwners
: Component or attribute containing the time seriesname::AbstractString
: name of time seriesstart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If T is a subtype of Forecast
then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.ignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsget_time_series_values
, get_time_series_timestamps
, get_time_series
InfrastructureSystems.get_time_series_counts
— Methodget_time_series_counts(
store::InfrastructureSystems.TimeSeriesMetadataStore
) -> InfrastructureSystems.TimeSeriesCounts
-
InfrastructureSystems.get_time_series_counts_by_type
— Methodget_time_series_counts_by_type(
+
InfrastructureSystems.get_time_series_counts_by_type
— Methodget_time_series_counts_by_type(
store::InfrastructureSystems.TimeSeriesMetadataStore
) -> Vector
-
InfrastructureSystems.get_time_series_format
— Methodget_time_series_format(file::CSV.File) -> Type
-
InfrastructureSystems.get_time_series_keys
— Methodget_time_series_keys(
+
InfrastructureSystems.get_time_series_format
— Methodget_time_series_format(file::CSV.File) -> Type
+
InfrastructureSystems.get_time_series_keys
— Methodget_time_series_keys(
store::InfrastructureSystems.TimeSeriesMetadataStore,
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute}
) -> Vector
-
InfrastructureSystems.get_time_series_keys
— Methodget_time_series_keys(
+
InfrastructureSystems.get_time_series_keys
— Methodget_time_series_keys(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute}
) -> Vector
-
get_time_series(::TimeSeriesOwners, ::TimeSeriesKey)
.InfrastructureSystems.get_time_series_manager
— Methodget_time_series_manager(
+
get_time_series(::TimeSeriesOwners, ::TimeSeriesKey)
.InfrastructureSystems.get_time_series_manager
— Methodget_time_series_manager(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute}
) -> Any
-
InfrastructureSystems.get_time_series_multiple
— Functionget_time_series_multiple(
+
InfrastructureSystems.get_time_series_multiple
— Functionget_time_series_multiple(
data::InfrastructureSystems.SystemData;
...
) -> Channel{Any}
@@ -873,7 +873,7 @@
type,
name
) -> Channel{Any}
-
collect
on the result to get an array.data::SystemData
: systemfilter_func = nothing
: Only return time_series for which this returns true.type = nothing
: Only return time_series with this type.name = nothing
: Only return time_series matching this value.InfrastructureSystems.get_time_series_multiple
— Functionget_time_series_multiple(
+
collect
on the result to get an array.data::SystemData
: systemfilter_func = nothing
: Only return time_series for which this returns true.type = nothing
: Only return time_series with this type.name = nothing
: Only return time_series matching this value.InfrastructureSystems.get_time_series_multiple
— Functionget_time_series_multiple(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute};
...
) -> Union{Tuple{}, Channel{Any}}
@@ -883,14 +883,14 @@
type,
name
) -> Union{Tuple{}, Channel{Any}}
-
collect
on the result to get an array.owner::TimeSeriesOwners
: component or attribute from which to get time_seriesfilter_func = nothing
: Only return time_series for which this returns true.type = nothing
: Only return time_series with this type.name = nothing
: Only return time_series matching this value.InfrastructureSystems.get_time_series_resolutions
— Methodget_time_series_resolutions(
+
collect
on the result to get an array.owner::TimeSeriesOwners
: component or attribute from which to get time_seriesfilter_func = nothing
: Only return time_series for which this returns true.type = nothing
: Only return time_series with this type.name = nothing
: Only return time_series matching this value.InfrastructureSystems.get_time_series_resolutions
— Methodget_time_series_resolutions(
store::InfrastructureSystems.TimeSeriesMetadataStore;
time_series_type
) -> Any
-
InfrastructureSystems.get_time_series_summary_table
— Methodget_time_series_summary_table(
+
InfrastructureSystems.get_time_series_summary_table
— Methodget_time_series_summary_table(
store::InfrastructureSystems.TimeSeriesMetadataStore
) -> DataFrames.DataFrame
-
InfrastructureSystems.get_time_series_timestamps
— Functionget_time_series_timestamps(
+
InfrastructureSystems.get_time_series_timestamps
— Functionget_time_series_timestamps(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
forecast::InfrastructureSystems.Forecast;
...
@@ -901,7 +901,7 @@
start_time::Union{Nothing, Dates.DateTime};
len
) -> Vector{D} where D<:Dates.TimeType
-
owner::TimeSeriesOwners
: Component or attribute containing the time seriesforecast::Forecast
: a concrete subtype of Forecast
start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp of one of the forecast windowslen::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.get_time_series_array
, get_time_series_values
, ForecastCache
.InfrastructureSystems.get_time_series_timestamps
— Functionget_time_series_timestamps(
+
owner::TimeSeriesOwners
: Component or attribute containing the time seriesforecast::Forecast
: a concrete subtype of Forecast
start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp of one of the forecast windowslen::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.get_time_series_array
, get_time_series_values
, ForecastCache
.InfrastructureSystems.get_time_series_timestamps
— Functionget_time_series_timestamps(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
time_series::InfrastructureSystems.StaticTimeSeries;
...
@@ -912,7 +912,7 @@
start_time::Union{Nothing, Dates.DateTime};
len
) -> Vector{D} where D<:Dates.TimeType
-
owner::TimeSeriesOwners
: Component or attribute containing the time seriestime_series::StaticTimeSeries
: subtype of StaticTimeSeries
(e.g., SingleTimeSeries
)start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp to retrieve. If nothing, use the initial_timestamp
of the time series.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire lengthget_time_series_array
, get_time_series_values
, StaticTimeSeriesCache
.InfrastructureSystems.get_time_series_timestamps
— Methodget_time_series_timestamps(
+
owner::TimeSeriesOwners
: Component or attribute containing the time seriestime_series::StaticTimeSeries
: subtype of StaticTimeSeries
(e.g., SingleTimeSeries
)start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp to retrieve. If nothing, use the initial_timestamp
of the time series.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire lengthget_time_series_array
, get_time_series_values
, StaticTimeSeriesCache
.InfrastructureSystems.get_time_series_timestamps
— Methodget_time_series_timestamps(
::Type{T<:InfrastructureSystems.TimeSeriesData},
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
name::AbstractString;
@@ -920,22 +920,22 @@
len,
features...
) -> Vector{D} where D<:Dates.TimeType
-
::Type{T}
: the type of time series (a concrete subtype of TimeSeriesData
)owner::TimeSeriesOwners
: Component or attribute containing the time seriesname::AbstractString
: name of time seriesstart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If T is a subtype of Forecast
then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsget_time_series_array
, get_time_series_values
InfrastructureSystems.get_time_series_type
— Methodget_time_series_type(
+
::Type{T}
: the type of time series (a concrete subtype of TimeSeriesData
)owner::TimeSeriesOwners
: Component or attribute containing the time seriesname::AbstractString
: name of time seriesstart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If T is a subtype of Forecast
then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsget_time_series_array
, get_time_series_values
InfrastructureSystems.get_time_series_type
— Methodget_time_series_type(
value::InfrastructureSystems.DeterministicMetadata
) -> Type{<:InfrastructureSystems.AbstractDeterministic}
-
DeterministicMetadata
time_series_type
.InfrastructureSystems.get_time_series_uuid
— Methodget_time_series_uuid(
+
DeterministicMetadata
time_series_type
.InfrastructureSystems.get_time_series_uuid
— Methodget_time_series_uuid(
value::InfrastructureSystems.DeterministicMetadata
) -> Base.UUID
-
DeterministicMetadata
time_series_uuid
.InfrastructureSystems.get_time_series_uuid
— Methodget_time_series_uuid(
+
DeterministicMetadata
time_series_uuid
.InfrastructureSystems.get_time_series_uuid
— Methodget_time_series_uuid(
value::InfrastructureSystems.ProbabilisticMetadata
) -> Base.UUID
-
ProbabilisticMetadata
time_series_uuid
.InfrastructureSystems.get_time_series_uuid
— Methodget_time_series_uuid(
+
ProbabilisticMetadata
time_series_uuid
.InfrastructureSystems.get_time_series_uuid
— Methodget_time_series_uuid(
value::InfrastructureSystems.ScenariosMetadata
) -> Base.UUID
-
ScenariosMetadata
time_series_uuid
.InfrastructureSystems.get_time_series_uuid
— Methodget_time_series_uuid(
+
ScenariosMetadata
time_series_uuid
.InfrastructureSystems.get_time_series_uuid
— Methodget_time_series_uuid(
value::InfrastructureSystems.SingleTimeSeriesMetadata
) -> Base.UUID
-
SingleTimeSeriesMetadata
time_series_uuid
.InfrastructureSystems.get_time_series_values
— Functionget_time_series_values(
+
SingleTimeSeriesMetadata
time_series_uuid
.InfrastructureSystems.get_time_series_values
— Functionget_time_series_values(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
time_series::InfrastructureSystems.StaticTimeSeries;
...
@@ -947,14 +947,14 @@
len,
ignore_scaling_factors
) -> Any
-
StaticTimeSeries
instanceowner::TimeSeriesOwners
: Component or attribute containing the time seriestime_series::StaticTimeSeries
: subtype of StaticTimeSeries
(e.g., SingleTimeSeries
)start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp to retrieve. If nothing, use the initial_timestamp
of the time series.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire lengthignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
get_time_series_array
, get_time_series_timestamps
, StaticTimeSeriesCache
.InfrastructureSystems.get_time_series_values
— Methodget_time_series_values(
+
StaticTimeSeries
instanceowner::TimeSeriesOwners
: Component or attribute containing the time seriestime_series::StaticTimeSeries
: subtype of StaticTimeSeries
(e.g., SingleTimeSeries
)start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp to retrieve. If nothing, use the initial_timestamp
of the time series.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire lengthignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
get_time_series_array
, get_time_series_timestamps
, StaticTimeSeriesCache
.InfrastructureSystems.get_time_series_values
— Methodget_time_series_values(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
forecast::InfrastructureSystems.Forecast,
start_time::Dates.DateTime;
len,
ignore_scaling_factors
) -> Any
-
Forecast
instance.owner::TimeSeriesOwners
: Component or attribute containing the time seriesforecast::Forecast
: a concrete subtype of Forecast
start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp of one of the forecast windowslen::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.ignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
get_time_series_array
, get_time_series_timestamps
, ForecastCache
.InfrastructureSystems.get_time_series_values
— Methodget_time_series_values(
+
Forecast
instance.owner::TimeSeriesOwners
: Component or attribute containing the time seriesforecast::Forecast
: a concrete subtype of Forecast
start_time::Union{Nothing, Dates.DateTime} = nothing
: the first timestamp of one of the forecast windowslen::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.ignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
get_time_series_array
, get_time_series_timestamps
, ForecastCache
.InfrastructureSystems.get_time_series_values
— Methodget_time_series_values(
::Type{T<:InfrastructureSystems.TimeSeriesData},
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
name::AbstractString;
@@ -963,185 +963,185 @@
ignore_scaling_factors,
features...
) -> Any
-
TimeSeriesData
instance.::Type{T}
: type of the time series (a concrete subtype of TimeSeriesData
)owner::TimeSeriesOwners
: Component or attribute containing the time seriesname::AbstractString
: name of time seriesstart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If T is a subtype of Forecast
then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.ignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsget_time_series_array
, get_time_series_timestamps
, get_time_series
InfrastructureSystems.get_timestamp
— Methodget_timestamp(
+
TimeSeriesData
instance.::Type{T}
: type of the time series (a concrete subtype of TimeSeriesData
)owner::TimeSeriesOwners
: Component or attribute containing the time seriesname::AbstractString
: name of time seriesstart_time::Union{Nothing, Dates.DateTime} = nothing
: If nothing, use the initial_timestamp
of the time series. If T is a subtype of Forecast
then start_time
must be the first timestamp of a window.len::Union{Nothing, Int} = nothing
: Length of time-series to retrieve (i.e. number of timestamps). If nothing, use the entire length.ignore_scaling_factors = false
: If true
, the time-series data will be multiplied by the result of calling the stored scaling_factor_multiplier
function on the owner
features...
: User-defined tags that differentiate multiple time series arrays for the same component attribute, such as different arrays for different scenarios or yearsget_time_series_array
, get_time_series_timestamps
, get_time_series
InfrastructureSystems.get_timestamp
— Methodget_timestamp(
_::Type{InfrastructureSystems.TimeSeriesFormatYMDPeriodAsColumn},
file::CSV.File,
row_index::Int64
) -> Any
-
InfrastructureSystems.get_total_period
— Methodget_total_period(f::InfrastructureSystems.Forecast) -> Any
-
InfrastructureSystems.get_unique_timestamps
— Methodget_unique_timestamps(
+
InfrastructureSystems.get_total_period
— Methodget_total_period(f::InfrastructureSystems.Forecast) -> Any
+
InfrastructureSystems.get_unique_timestamps
— Methodget_unique_timestamps(
_::Type{T<:InfrastructureSystems.TimeSeriesFileFormat},
file::CSV.File
) -> Vector{Dict{String, Any}}
-
InfrastructureSystems.get_uuid
— Methodget_uuid(
+
InfrastructureSystems.get_uuid
— Methodget_uuid(
obj::InfrastructureSystems.InfrastructureSystemsType
) -> Base.UUID
-
InfrastructureSystems.get_value_columns
— Methodget_value_columns(
+
InfrastructureSystems.get_value_columns
— Methodget_value_columns(
_::Type{InfrastructureSystems.TimeSeriesFormatComponentsAsColumnsNoTime},
file::CSV.File
) -> Vector{Symbol}
-
InfrastructureSystems.get_value_columns
— Methodget_value_columns(
+
InfrastructureSystems.get_value_columns
— Methodget_value_columns(
_::Type{InfrastructureSystems.TimeSeriesFormatYMDPeriodAsColumn},
file::CSV.File
) -> Vector{Symbol}
-
InfrastructureSystems.get_window
— Methodget_window(
+
InfrastructureSystems.get_window
— Methodget_window(
forecast::InfrastructureSystems.Forecast,
index::Int64;
len
) -> Any
-
InfrastructureSystems.get_x_coords
— Methodget_x_coords(
+
InfrastructureSystems.get_x_coords
— Methodget_x_coords(
data::InfrastructureSystems.PiecewiseLinearData
) -> Vector{Float64}
-
InfrastructureSystems.get_x_coords
— Methodget_x_coords(
+
InfrastructureSystems.get_x_coords
— Methodget_x_coords(
data::InfrastructureSystems.PiecewiseStepData
) -> Vector{Float64}
-
InfrastructureSystems.get_x_lengths
— Methodget_x_lengths(
+
InfrastructureSystems.get_x_lengths
— Methodget_x_lengths(
pwl::Union{InfrastructureSystems.PiecewiseLinearData, InfrastructureSystems.PiecewiseStepData}
) -> Vector{Float64}
-
InfrastructureSystems.get_y_coords
— Methodget_y_coords(
+
InfrastructureSystems.get_y_coords
— Methodget_y_coords(
data::InfrastructureSystems.PiecewiseLinearData
) -> Vector{Float64}
-
InfrastructureSystems.get_y_coords
— Methodget_y_coords(
+
InfrastructureSystems.get_y_coords
— Methodget_y_coords(
data::InfrastructureSystems.PiecewiseStepData
) -> Vector{Float64}
-
InfrastructureSystems.has_association
— Methodhas_association(
+
InfrastructureSystems.has_association
— Methodhas_association(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
attribute::InfrastructureSystems.SupplementalAttribute
) -> Bool
-
InfrastructureSystems.has_component
— Methodhas_component(
+
InfrastructureSystems.has_component
— Methodhas_component(
components::InfrastructureSystems.Components,
T::Type{<:InfrastructureSystems.InfrastructureSystemsComponent},
name::AbstractString
) -> Bool
-
InfrastructureSystems.has_component
— Methodhas_component(
+
InfrastructureSystems.has_component
— Methodhas_component(
data::InfrastructureSystems.SystemData,
subsystem_name::AbstractString,
component::InfrastructureSystems.InfrastructureSystemsComponent
) -> Bool
-
InfrastructureSystems.has_component
— Methodhas_component(
+
InfrastructureSystems.has_component
— Methodhas_component(
data::InfrastructureSystems.SystemData,
T::Type{<:InfrastructureSystems.InfrastructureSystemsComponent},
name::AbstractString
) -> Bool
-
InfrastructureSystems.has_components
— Methodhas_components(
+
InfrastructureSystems.has_components
— Methodhas_components(
components::InfrastructureSystems.Components,
T::Type{<:InfrastructureSystems.InfrastructureSystemsComponent}
) -> Bool
-
InfrastructureSystems.has_metadata
— Methodhas_metadata(
+
InfrastructureSystems.has_metadata
— Methodhas_metadata(
store::InfrastructureSystems.TimeSeriesMetadataStore,
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
metadata::InfrastructureSystems.TimeSeriesMetadata
) -> Bool
-
InfrastructureSystems.has_supplemental_attributes
— Methodhas_supplemental_attributes(
+
InfrastructureSystems.has_supplemental_attributes
— Methodhas_supplemental_attributes(
component::InfrastructureSystems.InfrastructureSystemsComponent
) -> Bool
-
InfrastructureSystems.has_supplemental_attributes
— Methodhas_supplemental_attributes(
+
InfrastructureSystems.has_supplemental_attributes
— Methodhas_supplemental_attributes(
component::InfrastructureSystems.InfrastructureSystemsComponent,
_::Type{T<:InfrastructureSystems.SupplementalAttribute}
) -> Bool
-
InfrastructureSystems.has_time_series
— Methodhas_time_series(
+
InfrastructureSystems.has_time_series
— Methodhas_time_series(
store::InfrastructureSystems.TimeSeriesMetadataStore,
time_series_uuid::Base.UUID
) -> Any
-
InfrastructureSystems.has_time_series
— Methodhas_time_series(
+
InfrastructureSystems.has_time_series
— Methodhas_time_series(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute}
) -> Any
-
InfrastructureSystems.has_time_series
— Methodhas_time_series(
+
InfrastructureSystems.has_time_series
— Methodhas_time_series(
val::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
_::Type{T<:InfrastructureSystems.TimeSeriesData}
) -> Any
-
InfrastructureSystems.hash_from_fields
— Methodhash_from_fields(a) -> Any
-
a
by combining hashes of all its fieldsInfrastructureSystems.head
— Methodhead(
+
InfrastructureSystems.hash_from_fields
— Methodhash_from_fields(a) -> Any
+
a
by combining hashes of all its fieldsInfrastructureSystems.head
— Methodhead(
time_series::InfrastructureSystems.SingleTimeSeries
) -> Any
-
InfrastructureSystems.increment_count!
— Methodincrement_count!(
+
InfrastructureSystems.increment_count!
— Methodincrement_count!(
tracker::InfrastructureSystems.LogEventTracker,
event::InfrastructureSystems.LogEvent,
suppressed::Bool
) -> Union{Nothing, Int64, InfrastructureSystems.LogEvent}
-
InfrastructureSystems.index_to_initial_time
— Methodindex_to_initial_time(
+
InfrastructureSystems.index_to_initial_time
— Methodindex_to_initial_time(
forecast::InfrastructureSystems.Forecast,
index::Int64
) -> Any
-
InfrastructureSystems.is_assigned_to_subsystem
— Methodis_assigned_to_subsystem(
+
InfrastructureSystems.is_assigned_to_subsystem
— Methodis_assigned_to_subsystem(
data::InfrastructureSystems.SystemData,
component::InfrastructureSystems.InfrastructureSystemsComponent,
subsystem_name::AbstractString
) -> Bool
-
InfrastructureSystems.is_assigned_to_subsystem
— Methodis_assigned_to_subsystem(
+
InfrastructureSystems.is_assigned_to_subsystem
— Methodis_assigned_to_subsystem(
data::InfrastructureSystems.SystemData,
component::InfrastructureSystems.InfrastructureSystemsComponent
) -> Bool
-
InfrastructureSystems.is_convex
— Methodis_convex(
+
InfrastructureSystems.is_convex
— Methodis_convex(
pwl::InfrastructureSystems.PiecewiseLinearData
) -> Bool
-
InfrastructureSystems.is_ext_valid_for_serialization
— Methodis_ext_valid_for_serialization(value) -> Bool
-
InfrastructureSystems.isequal_from_fields
— Methodisequal_from_fields(a, b) -> Any
-
isequal
values of all the fields in a
and b
InfrastructureSystems.iterate_components
— Methoditerate_components(
+
InfrastructureSystems.is_ext_valid_for_serialization
— Methodis_ext_valid_for_serialization(value) -> Bool
+
InfrastructureSystems.isequal_from_fields
— Methodisequal_from_fields(a, b) -> Any
+
isequal
values of all the fields in a
and b
InfrastructureSystems.iterate_components
— Methoditerate_components(
components::InfrastructureSystems.Components
) -> Base.Iterators.Flatten{Base.Generator{Base.ValueIterator{Dict{DataType, Dict{String, <:InfrastructureSystems.InfrastructureSystemsComponent}}}, InfrastructureSystems.var"#112#113"}}
for component in iterate_components(obj)
@show component
-end
get_components
InfrastructureSystems.iterate_container
— Methoditerate_container(
+end
get_components
InfrastructureSystems.iterate_container
— Methoditerate_container(
container::InfrastructureSystems.InfrastructureSystemsContainer
) -> Base.Iterators.Flatten{I} where I<:(Base.Generator{_A, InfrastructureSystems.var"#112#113"} where _A)
-
InfrastructureSystems.iterate_supplemental_attributes
— Methoditerate_supplemental_attributes(
+
InfrastructureSystems.iterate_supplemental_attributes
— Methoditerate_supplemental_attributes(
mgr::InfrastructureSystems.SupplementalAttributeManager
) -> Base.Iterators.Flatten{Base.Generator{Base.ValueIterator{Dict{DataType, Dict{Base.UUID, <:InfrastructureSystems.SupplementalAttribute}}}, InfrastructureSystems.var"#112#113"}}
for supplemental_attribute in iterate_supplemental_attributes(obj)
@show supplemental_attribute
-end
InfrastructureSystems.iterate_windows
— Methoditerate_windows(
+end
InfrastructureSystems.iterate_windows
— Methoditerate_windows(
forecast::InfrastructureSystems.DeterministicSingleTimeSeries
) -> Any
for window in iterate_windows(forecast)
@show values(maximum(window))
-end
InfrastructureSystems.iterate_windows
— Methoditerate_windows(
+end
InfrastructureSystems.iterate_windows
— Methoditerate_windows(
forecast::InfrastructureSystems.Deterministic
) -> Base.Generator{I, InfrastructureSystems.var"#107#108"{InfrastructureSystems.Deterministic}} where I<:(DataStructures.SDMKeyIteration{T} where T<:DataStructures.SortedDict)
for window in iterate_windows(forecast)
@show values(maximum(window))
-end
InfrastructureSystems.iterate_windows
— Methoditerate_windows(
+end
InfrastructureSystems.iterate_windows
— Methoditerate_windows(
forecast::InfrastructureSystems.Probabilistic
) -> Base.Generator{I, InfrastructureSystems.var"#107#108"{InfrastructureSystems.Probabilistic}} where I<:(DataStructures.SDMKeyIteration{T} where T<:DataStructures.SortedDict)
for window in iterate_windows(forecast)
@show values(maximum(window))
-end
InfrastructureSystems.iterate_windows
— Methoditerate_windows(
+end
InfrastructureSystems.iterate_windows
— Methoditerate_windows(
forecast::InfrastructureSystems.Scenarios
) -> Base.Generator{I, InfrastructureSystems.var"#107#108"{InfrastructureSystems.Scenarios}} where I<:(DataStructures.SDMKeyIteration{T} where T<:DataStructures.SortedDict)
for window in iterate_windows(forecast)
@show values(maximum(window))
-end
InfrastructureSystems.list_associated_component_uuids
— Methodlist_associated_component_uuids(
+end
InfrastructureSystems.list_associated_component_uuids
— Methodlist_associated_component_uuids(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
attribute::InfrastructureSystems.SupplementalAttribute
) -> Any
-
InfrastructureSystems.list_associated_supplemental_attribute_uuids
— Methodlist_associated_supplemental_attribute_uuids(
+
InfrastructureSystems.list_associated_supplemental_attribute_uuids
— Methodlist_associated_supplemental_attribute_uuids(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
component::InfrastructureSystems.InfrastructureSystemsComponent;
attribute_type
) -> Any
-
InfrastructureSystems.list_existing_metadata
— Methodlist_existing_metadata(
+
InfrastructureSystems.list_existing_metadata
— Methodlist_existing_metadata(
store::InfrastructureSystems.TimeSeriesMetadataStore,
owners::Vector{Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute}},
metadata::Vector{InfrastructureSystems.TimeSeriesMetadata}
) -> Vector
-
InfrastructureSystems.list_existing_time_series_uuids
— Methodlist_existing_time_series_uuids(
+
InfrastructureSystems.list_existing_time_series_uuids
— Methodlist_existing_time_series_uuids(
store::InfrastructureSystems.TimeSeriesMetadataStore,
uuids
) -> Any
-
InfrastructureSystems.list_matching_time_series_uuids
— Methodlist_matching_time_series_uuids(
+
InfrastructureSystems.list_matching_time_series_uuids
— Methodlist_matching_time_series_uuids(
store::InfrastructureSystems.TimeSeriesMetadataStore;
time_series_type,
name,
features...
) -> Any
-
InfrastructureSystems.list_metadata_with_owner_uuid
— Methodlist_metadata_with_owner_uuid(
+
InfrastructureSystems.list_metadata_with_owner_uuid
— Methodlist_metadata_with_owner_uuid(
store::InfrastructureSystems.TimeSeriesMetadataStore,
owner_type::Type{<:Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute}};
time_series_type,
name,
features...
) -> Vector
-
InfrastructureSystems.list_recorder_events
— Methodlist_recorder_events(
+
InfrastructureSystems.list_recorder_events
— Methodlist_recorder_events(
::Type{T<:InfrastructureSystems.AbstractRecorderEvent},
filename::AbstractString
) -> Vector{T} where T<:InfrastructureSystems.AbstractRecorderEvent
@@ -1150,25 +1150,25 @@
filename::AbstractString,
filter_func::Union{Nothing, Function}
) -> Vector{T} where T<:InfrastructureSystems.AbstractRecorderEvent
-
T
: event typefilename::AbstractString
: filename containing recorder eventsfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts an event of type T and returns a Bool. Apply this function to each event and only return events where the result is true.InfrastructureSystems.load_records!
— Methodload_records!(
+
T
: event typefilename::AbstractString
: filename containing recorder eventsfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts an event of type T and returns a Bool. Apply this function to each event and only return events where the result is true.InfrastructureSystems.load_records!
— Methodload_records!(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
records
)
-
to_records
.InfrastructureSystems.make_time_array
— Methodmake_time_array(
+
to_records
.InfrastructureSystems.make_time_array
— Methodmake_time_array(
forecast::InfrastructureSystems.Forecast,
start_time::Dates.DateTime;
len
) -> Any
-
InfrastructureSystems.make_time_series!
— Methodmake_time_series!(
+
InfrastructureSystems.make_time_series!
— Methodmake_time_series!(
cache::InfrastructureSystems.TimeSeriesParsingCache,
ts_file_metadata::InfrastructureSystems.TimeSeriesFileMetadata
) -> Any
-
cache::TimeSeriesParsingCache
: cached datats_file_metadata::TimeSeriesFileMetadata
: metadataresolution::{Nothing, Dates.Period}
: skip any time_series that don't match this resolutionInfrastructureSystems.mask_component!
— Methodmask_component!(
+
cache::TimeSeriesParsingCache
: cached datats_file_metadata::TimeSeriesFileMetadata
: metadataresolution::{Nothing, Dates.Period}
: skip any time_series that don't match this resolutionInfrastructureSystems.mask_component!
— Methodmask_component!(
data::InfrastructureSystems.SystemData,
component::InfrastructureSystems.InfrastructureSystemsComponent;
remove_time_series
)
-
InfrastructureSystems.open_file_logger
— Functionopen_file_logger(func::Function, filename::String) -> Any
+
InfrastructureSystems.open_file_logger
— Functionopen_file_logger(func::Function, filename::String) -> Any
open_file_logger(
func::Function,
filename::String,
@@ -1183,15 +1183,15 @@
open_file_logger("log.txt", Logging.Info) do logger
global_logger(logger)
@info "hello world"
-end
InfrastructureSystems.prepare_for_removal!
— Methodprepare_for_removal!(
+end
InfrastructureSystems.prepare_for_removal!
— Methodprepare_for_removal!(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute}
)
-
InfrastructureSystems.prepare_for_serialization_to_file!
— Methodprepare_for_serialization_to_file!(
+
InfrastructureSystems.prepare_for_serialization_to_file!
— Methodprepare_for_serialization_to_file!(
data::InfrastructureSystems.SystemData,
filename::AbstractString;
force
)
-
InfrastructureSystems.read_time_series
— Methodread_time_series(
+
InfrastructureSystems.read_time_series
— Methodread_time_series(
::Type{T<:InfrastructureSystems.TimeSeriesData},
data_file::AbstractString;
...
@@ -1202,14 +1202,14 @@
component_name;
kwargs...
) -> Any
-
InfrastructureSystems.read_time_series
— Methodread_time_series(
+
InfrastructureSystems.read_time_series
— Methodread_time_series(
::Type{T<:InfrastructureSystems.TimeSeriesFormatPeriodAsHeader},
::Type{<:InfrastructureSystems.StaticTimeSeries},
file::CSV.File,
component_name::AbstractString;
kwargs...
) -> InfrastructureSystems.RawTimeSeries
-
InfrastructureSystems.read_time_series
— Methodread_time_series(
+
InfrastructureSystems.read_time_series
— Methodread_time_series(
::Type{T<:InfrastructureSystems.TimeSeriesFormatComponentsAsColumnsNoTime},
::Type{<:InfrastructureSystems.StaticTimeSeries},
file::CSV.File;
@@ -1222,7 +1222,7 @@
component_name;
kwargs...
) -> InfrastructureSystems.RawTimeSeries
-
InfrastructureSystems.read_time_series
— Methodread_time_series(
+
InfrastructureSystems.read_time_series
— Methodread_time_series(
::Type{T<:Union{InfrastructureSystems.TimeSeriesFormatDateTimeAsColumn, InfrastructureSystems.TimeSeriesFormatPeriodAsColumn}},
::Type{<:InfrastructureSystems.StaticTimeSeries},
file::CSV.File;
@@ -1235,7 +1235,7 @@
component_name;
kwargs...
) -> InfrastructureSystems.RawTimeSeries
-
InfrastructureSystems.read_time_series
— Methodread_time_series(
+
InfrastructureSystems.read_time_series
— Methodread_time_series(
::Type{T<:InfrastructureSystems.TimeSeriesFormatDateTimeAsColumn},
::Type{InfrastructureSystems.Deterministic},
file::CSV.File;
@@ -1248,376 +1248,376 @@
component_name;
kwargs...
) -> InfrastructureSystems.RawTimeSeries
-
InfrastructureSystems.read_time_series_file_metadata
— Methodread_time_series_file_metadata(
+
InfrastructureSystems.read_time_series_file_metadata
— Methodread_time_series_file_metadata(
file_path::AbstractString
) -> Any
-
InfrastructureSystems.redirect_stdout_to_log
— Methodredirect_stdout_to_log(func::Function) -> Any
-
InfrastructureSystems.register_recorder!
— Methodregister_recorder!(name::Symbol; io, mode, directory)
-
unregister_recorder!
is called to close the file handle.name::Symbol
: name of recorderio::Union{Nothing, IO}
: If nothing, record events in a file using name.mode = "w"
: Only used when io is nothing.directory = "."
: Only used when io is nothing.InfrastructureSystems.remove_association!
— Methodremove_association!(
+
InfrastructureSystems.redirect_stdout_to_log
— Methodredirect_stdout_to_log(func::Function) -> Any
+
InfrastructureSystems.register_recorder!
— Methodregister_recorder!(name::Symbol; io, mode, directory)
+
unregister_recorder!
is called to close the file handle.name::Symbol
: name of recorderio::Union{Nothing, IO}
: If nothing, record events in a file using name.mode = "w"
: Only used when io is nothing.directory = "."
: Only used when io is nothing.InfrastructureSystems.remove_association!
— Methodremove_association!(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
component::InfrastructureSystems.InfrastructureSystemsComponent,
attribute::InfrastructureSystems.SupplementalAttribute
)
-
InfrastructureSystems.remove_associations!
— Methodremove_associations!(
+
InfrastructureSystems.remove_associations!
— Methodremove_associations!(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
type::Type{<:InfrastructureSystems.SupplementalAttribute}
)
-
InfrastructureSystems.remove_component!
— Methodremove_component!(
+
InfrastructureSystems.remove_component!
— Methodremove_component!(
components::InfrastructureSystems.Components,
component::InfrastructureSystems.InfrastructureSystemsComponent;
remove_time_series
) -> InfrastructureSystems.InfrastructureSystemsComponent
-
InfrastructureSystems.remove_component!
— Methodremove_component!(
+
InfrastructureSystems.remove_component!
— Methodremove_component!(
::Type{T<:InfrastructureSystems.InfrastructureSystemsComponent},
components::InfrastructureSystems.Components,
name::AbstractString;
remove_time_series
) -> InfrastructureSystems.InfrastructureSystemsComponent
-
InfrastructureSystems.remove_component_from_subsystem!
— Methodremove_component_from_subsystem!(
+
InfrastructureSystems.remove_component_from_subsystem!
— Methodremove_component_from_subsystem!(
data::InfrastructureSystems.SystemData,
subsystem_name::AbstractString,
component::InfrastructureSystems.InfrastructureSystemsComponent
)
-
InfrastructureSystems.remove_components!
— Methodremove_components!(
+
InfrastructureSystems.remove_components!
— Methodremove_components!(
_::Type{T<:InfrastructureSystems.InfrastructureSystemsComponent},
components::InfrastructureSystems.Components
) -> Base.ValueIterator{T} where T<:(Dict{String, <:InfrastructureSystems.InfrastructureSystemsComponent})
-
InfrastructureSystems.remove_metadata!
— Methodremove_metadata!(
+
InfrastructureSystems.remove_metadata!
— Methodremove_metadata!(
store::InfrastructureSystems.TimeSeriesMetadataStore,
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
metadata::InfrastructureSystems.TimeSeriesMetadata
)
-
InfrastructureSystems.remove_subsystem!
— Methodremove_subsystem!(
+
InfrastructureSystems.remove_subsystem!
— Methodremove_subsystem!(
data::InfrastructureSystems.SystemData,
subsystem_name::AbstractString
)
-
InfrastructureSystems.remove_supplemental_attributes!
— Methodremove_supplemental_attributes!(
+
InfrastructureSystems.remove_supplemental_attributes!
— Methodremove_supplemental_attributes!(
mgr::InfrastructureSystems.SupplementalAttributeManager,
_::Type{T<:InfrastructureSystems.SupplementalAttribute}
) -> Base.ValueIterator{T} where T<:(Dict{Base.UUID, <:InfrastructureSystems.SupplementalAttribute})
-
InfrastructureSystems.remove_time_series!
— Methodremove_time_series!(
+
InfrastructureSystems.remove_time_series!
— Methodremove_time_series!(
mgr::InfrastructureSystems.TimeSeriesManager,
time_series_type::Type{<:InfrastructureSystems.TimeSeriesData},
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute},
name::String;
features...
)
-
InfrastructureSystems.remove_time_series!
— Methodremove_time_series!(
+
InfrastructureSystems.remove_time_series!
— Methodremove_time_series!(
data::InfrastructureSystems.SystemData,
::Type{T<:InfrastructureSystems.TimeSeriesData},
component::InfrastructureSystems.InfrastructureSystemsComponent,
name::String;
features...
)
-
InfrastructureSystems.remove_time_series!
— Methodremove_time_series!(
+
InfrastructureSystems.remove_time_series!
— Methodremove_time_series!(
data::InfrastructureSystems.SystemData,
_::Type{T<:InfrastructureSystems.TimeSeriesData}
)
-
data::SystemData
: systemtype::Type{<:TimeSeriesData}
: Type of time series objects to remove.InfrastructureSystems.replace_component_uuid!
— Methodreplace_component_uuid!(
+
data::SystemData
: systemtype::Type{<:TimeSeriesData}
: Type of time series objects to remove.InfrastructureSystems.replace_component_uuid!
— Methodreplace_component_uuid!(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
old_uuid::Base.UUID,
new_uuid::Base.UUID
)
-
InfrastructureSystems.replace_iterator
— Methodreplace_iterator(
+
InfrastructureSystems.replace_iterator
— Methodreplace_iterator(
container::InfrastructureSystems.LazyDictFromIterator,
iter
)
-
InfrastructureSystems.report_log_summary
— Methodreport_log_summary(
+
InfrastructureSystems.report_log_summary
— Methodreport_log_summary(
tracker::InfrastructureSystems.LogEventTracker
) -> String
-
InfrastructureSystems.report_log_summary
— Methodreport_log_summary(
+
InfrastructureSystems.report_log_summary
— Methodreport_log_summary(
logger::InfrastructureSystems.MultiLogger
) -> String
-
InfrastructureSystems.reset!
— Methodreset!(cache::InfrastructureSystems.TimeSeriesCache)
-
get_next_time_series_array!
InfrastructureSystems.reset_iterator
— Methodreset_iterator(
+
InfrastructureSystems.reset!
— Methodreset!(cache::InfrastructureSystems.TimeSeriesCache)
+
get_next_time_series_array!
InfrastructureSystems.reset_iterator
— Methodreset_iterator(
container::InfrastructureSystems.LazyDictFromIterator
)
-
InfrastructureSystems.serialize
— Methodserialize(
+
InfrastructureSystems.serialize
— Methodserialize(
val::InfrastructureSystems.InfrastructureSystemsType
-) -> Dict{String, Any}
-
InfrastructureSystems.set_component!
— Methodset_component!(
+) -> Vector{Dict{String, Any}}
+
InfrastructureSystems.set_component!
— Methodset_component!(
metadata::InfrastructureSystems.TimeSeriesFileMetadata,
data::InfrastructureSystems.SystemData,
mod::Module
) -> Union{Nothing, InfrastructureSystems.InfrastructureSystemsComponent}
-
InfrastructureSystems.set_count!
— Methodset_count!(
+
InfrastructureSystems.set_count!
— Methodset_count!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
count
.InfrastructureSystems.set_count!
— Methodset_count!(
+
DeterministicMetadata
count
.InfrastructureSystems.set_count!
— Methodset_count!(
value::InfrastructureSystems.DeterministicSingleTimeSeries,
val
) -> Any
-
DeterministicSingleTimeSeries
count
.InfrastructureSystems.set_count!
— Methodset_count!(
+
DeterministicSingleTimeSeries
count
.InfrastructureSystems.set_count!
— Methodset_count!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
count
.InfrastructureSystems.set_count!
— Methodset_count!(
+
ProbabilisticMetadata
count
.InfrastructureSystems.set_count!
— Methodset_count!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
count
.InfrastructureSystems.set_data!
— Methodset_data!(
+
ScenariosMetadata
count
.InfrastructureSystems.set_data!
— Methodset_data!(
value::InfrastructureSystems.Deterministic,
val
) -> Any
-
Deterministic
data
.InfrastructureSystems.set_data!
— Methodset_data!(
+
Deterministic
data
.InfrastructureSystems.set_data!
— Methodset_data!(
value::InfrastructureSystems.Probabilistic,
val
) -> Any
-
Probabilistic
data
.InfrastructureSystems.set_data!
— Methodset_data!(
+
Probabilistic
data
.InfrastructureSystems.set_data!
— Methodset_data!(
value::InfrastructureSystems.Scenarios,
val
) -> Any
-
Scenarios
data
.InfrastructureSystems.set_data!
— Methodset_data!(
+
Scenarios
data
.InfrastructureSystems.set_data!
— Methodset_data!(
value::InfrastructureSystems.SingleTimeSeries,
val
) -> Any
-
SingleTimeSeries
data
.InfrastructureSystems.set_features!
— Methodset_features!(
+
SingleTimeSeries
data
.InfrastructureSystems.set_features!
— Methodset_features!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
features
.InfrastructureSystems.set_features!
— Methodset_features!(
+
DeterministicMetadata
features
.InfrastructureSystems.set_features!
— Methodset_features!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
features
.InfrastructureSystems.set_features!
— Methodset_features!(
+
ProbabilisticMetadata
features
.InfrastructureSystems.set_features!
— Methodset_features!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
features
.InfrastructureSystems.set_features!
— Methodset_features!(
+
ScenariosMetadata
features
.InfrastructureSystems.set_features!
— Methodset_features!(
value::InfrastructureSystems.SingleTimeSeriesMetadata,
val
) -> Any
-
SingleTimeSeriesMetadata
features
.InfrastructureSystems.set_group_level!
— Methodset_group_level!(
+
SingleTimeSeriesMetadata
features
.InfrastructureSystems.set_group_level!
— Methodset_group_level!(
logger::InfrastructureSystems.MultiLogger,
group::Symbol,
level::Base.CoreLogging.LogLevel
)
-
group
field of a log message defaults to its file's base name (no extension) as a symbol. It can be customized by setting _group = :a_group_name
.InfrastructureSystems.set_group_levels!
— Methodset_group_levels!(
+
group
field of a log message defaults to its file's base name (no extension) as a symbol. It can be customized by setting _group = :a_group_name
.InfrastructureSystems.set_group_levels!
— Methodset_group_levels!(
logger::InfrastructureSystems.MultiLogger,
group_levels::Dict{Symbol, Base.CoreLogging.LogLevel}
)
-
set_group_level
for more information.InfrastructureSystems.set_horizon!
— Methodset_horizon!(
+
set_group_level
for more information.InfrastructureSystems.set_horizon!
— Methodset_horizon!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
horizon
.InfrastructureSystems.set_horizon!
— Methodset_horizon!(
+
DeterministicMetadata
horizon
.InfrastructureSystems.set_horizon!
— Methodset_horizon!(
value::InfrastructureSystems.DeterministicSingleTimeSeries,
val
) -> Any
-
DeterministicSingleTimeSeries
horizon
.InfrastructureSystems.set_horizon!
— Methodset_horizon!(
+
DeterministicSingleTimeSeries
horizon
.InfrastructureSystems.set_horizon!
— Methodset_horizon!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
horizon
.InfrastructureSystems.set_horizon!
— Methodset_horizon!(
+
ProbabilisticMetadata
horizon
.InfrastructureSystems.set_horizon!
— Methodset_horizon!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
horizon
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
+
ScenariosMetadata
horizon
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
initial_timestamp
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
+
DeterministicMetadata
initial_timestamp
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
value::InfrastructureSystems.DeterministicSingleTimeSeries,
val
) -> Any
-
DeterministicSingleTimeSeries
initial_timestamp
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
+
DeterministicSingleTimeSeries
initial_timestamp
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
initial_timestamp
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
+
ProbabilisticMetadata
initial_timestamp
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
initial_timestamp
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
+
ScenariosMetadata
initial_timestamp
.InfrastructureSystems.set_initial_timestamp!
— Methodset_initial_timestamp!(
value::InfrastructureSystems.SingleTimeSeriesMetadata,
val
) -> Any
-
SingleTimeSeriesMetadata
initial_timestamp
.InfrastructureSystems.set_internal!
— Methodset_internal!(
+
SingleTimeSeriesMetadata
initial_timestamp
.InfrastructureSystems.set_internal!
— Methodset_internal!(
value::InfrastructureSystems.Deterministic,
val
) -> Any
-
Deterministic
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
+
Deterministic
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
+
DeterministicMetadata
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
value::InfrastructureSystems.Probabilistic,
val
) -> Any
-
Probabilistic
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
+
Probabilistic
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
+
ProbabilisticMetadata
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
value::InfrastructureSystems.Scenarios,
val
) -> Any
-
Scenarios
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
+
Scenarios
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
+
ScenariosMetadata
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
value::InfrastructureSystems.SingleTimeSeries,
val
) -> Any
-
SingleTimeSeries
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
+
SingleTimeSeries
internal
.InfrastructureSystems.set_internal!
— Methodset_internal!(
value::InfrastructureSystems.SingleTimeSeriesMetadata,
val
) -> Any
-
SingleTimeSeriesMetadata
internal
.InfrastructureSystems.set_interval!
— Methodset_interval!(
+
SingleTimeSeriesMetadata
internal
.InfrastructureSystems.set_interval!
— Methodset_interval!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
interval
.InfrastructureSystems.set_interval!
— Methodset_interval!(
+
DeterministicMetadata
interval
.InfrastructureSystems.set_interval!
— Methodset_interval!(
value::InfrastructureSystems.DeterministicSingleTimeSeries,
val
) -> Any
-
DeterministicSingleTimeSeries
interval
.InfrastructureSystems.set_interval!
— Methodset_interval!(
+
DeterministicSingleTimeSeries
interval
.InfrastructureSystems.set_interval!
— Methodset_interval!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
interval
.InfrastructureSystems.set_interval!
— Methodset_interval!(
+
ProbabilisticMetadata
interval
.InfrastructureSystems.set_interval!
— Methodset_interval!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
interval
.InfrastructureSystems.set_length!
— Methodset_length!(
+
ScenariosMetadata
interval
.InfrastructureSystems.set_length!
— Methodset_length!(
value::InfrastructureSystems.SingleTimeSeriesMetadata,
val
) -> Any
-
SingleTimeSeriesMetadata
length
.InfrastructureSystems.set_name!
— Methodset_name!(
+
SingleTimeSeriesMetadata
length
.InfrastructureSystems.set_name!
— Methodset_name!(
value::InfrastructureSystems.Deterministic,
val
) -> Any
-
Deterministic
name
.InfrastructureSystems.set_name!
— Methodset_name!(
+
Deterministic
name
.InfrastructureSystems.set_name!
— Methodset_name!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
name
.InfrastructureSystems.set_name!
— Methodset_name!(
+
DeterministicMetadata
name
.InfrastructureSystems.set_name!
— Methodset_name!(
value::InfrastructureSystems.Probabilistic,
val
) -> Any
-
Probabilistic
name
.InfrastructureSystems.set_name!
— Methodset_name!(
+
Probabilistic
name
.InfrastructureSystems.set_name!
— Methodset_name!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
name
.InfrastructureSystems.set_name!
— Methodset_name!(
+
ProbabilisticMetadata
name
.InfrastructureSystems.set_name!
— Methodset_name!(
value::InfrastructureSystems.Scenarios,
val
) -> Any
-
Scenarios
name
.InfrastructureSystems.set_name!
— Methodset_name!(
+
Scenarios
name
.InfrastructureSystems.set_name!
— Methodset_name!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
name
.InfrastructureSystems.set_name!
— Methodset_name!(
+
ScenariosMetadata
name
.InfrastructureSystems.set_name!
— Methodset_name!(
value::InfrastructureSystems.SingleTimeSeries,
val
) -> Any
-
SingleTimeSeries
name
.InfrastructureSystems.set_name!
— Methodset_name!(
+
SingleTimeSeries
name
.InfrastructureSystems.set_name!
— Methodset_name!(
value::InfrastructureSystems.SingleTimeSeriesMetadata,
val
) -> Any
-
SingleTimeSeriesMetadata
name
.InfrastructureSystems.set_percentiles!
— Methodset_percentiles!(
+
SingleTimeSeriesMetadata
name
.InfrastructureSystems.set_percentiles!
— Methodset_percentiles!(
value::InfrastructureSystems.Probabilistic,
val
) -> Any
-
Probabilistic
percentiles
.InfrastructureSystems.set_percentiles!
— Methodset_percentiles!(
+
Probabilistic
percentiles
.InfrastructureSystems.set_percentiles!
— Methodset_percentiles!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
percentiles
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
+
ProbabilisticMetadata
percentiles
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
value::InfrastructureSystems.Deterministic,
val
) -> Any
-
Deterministic
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
+
Deterministic
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
+
DeterministicMetadata
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
value::InfrastructureSystems.Probabilistic,
val
) -> Any
-
Probabilistic
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
+
Probabilistic
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
+
ProbabilisticMetadata
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
value::InfrastructureSystems.Scenarios,
val
) -> Any
-
Scenarios
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
+
Scenarios
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
+
ScenariosMetadata
resolution
.InfrastructureSystems.set_resolution!
— Methodset_resolution!(
value::InfrastructureSystems.SingleTimeSeriesMetadata,
val
) -> Any
-
SingleTimeSeriesMetadata
resolution
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
+
SingleTimeSeriesMetadata
resolution
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
value::InfrastructureSystems.Deterministic,
val
) -> Any
-
Deterministic
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
+
Deterministic
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
+
DeterministicMetadata
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
value::InfrastructureSystems.Probabilistic,
val
) -> Any
-
Probabilistic
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
+
Probabilistic
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
+
ProbabilisticMetadata
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
value::InfrastructureSystems.Scenarios,
val
) -> Any
-
Scenarios
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
+
Scenarios
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
+
ScenariosMetadata
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
value::InfrastructureSystems.SingleTimeSeries,
val
) -> Any
-
SingleTimeSeries
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
+
SingleTimeSeries
scaling_factor_multiplier
.InfrastructureSystems.set_scaling_factor_multiplier!
— Methodset_scaling_factor_multiplier!(
value::InfrastructureSystems.SingleTimeSeriesMetadata,
val
) -> Any
-
SingleTimeSeriesMetadata
scaling_factor_multiplier
.InfrastructureSystems.set_scenario_count!
— Methodset_scenario_count!(
+
SingleTimeSeriesMetadata
scaling_factor_multiplier
.InfrastructureSystems.set_scenario_count!
— Methodset_scenario_count!(
value::InfrastructureSystems.Scenarios,
val
) -> Any
-
Scenarios
scenario_count
.InfrastructureSystems.set_scenario_count!
— Methodset_scenario_count!(
+
Scenarios
scenario_count
.InfrastructureSystems.set_scenario_count!
— Methodset_scenario_count!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
scenario_count
.InfrastructureSystems.set_single_time_series!
— Methodset_single_time_series!(
+
ScenariosMetadata
scenario_count
.InfrastructureSystems.set_single_time_series!
— Methodset_single_time_series!(
value::InfrastructureSystems.DeterministicSingleTimeSeries,
val
) -> Any
-
DeterministicSingleTimeSeries
single_time_series
.InfrastructureSystems.set_time_series_type!
— Methodset_time_series_type!(
+
DeterministicSingleTimeSeries
single_time_series
.InfrastructureSystems.set_time_series_type!
— Methodset_time_series_type!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
time_series_type
.InfrastructureSystems.set_time_series_uuid!
— Methodset_time_series_uuid!(
+
DeterministicMetadata
time_series_type
.InfrastructureSystems.set_time_series_uuid!
— Methodset_time_series_uuid!(
value::InfrastructureSystems.DeterministicMetadata,
val
) -> Any
-
DeterministicMetadata
time_series_uuid
.InfrastructureSystems.set_time_series_uuid!
— Methodset_time_series_uuid!(
+
DeterministicMetadata
time_series_uuid
.InfrastructureSystems.set_time_series_uuid!
— Methodset_time_series_uuid!(
value::InfrastructureSystems.ProbabilisticMetadata,
val
) -> Any
-
ProbabilisticMetadata
time_series_uuid
.InfrastructureSystems.set_time_series_uuid!
— Methodset_time_series_uuid!(
+
ProbabilisticMetadata
time_series_uuid
.InfrastructureSystems.set_time_series_uuid!
— Methodset_time_series_uuid!(
value::InfrastructureSystems.ScenariosMetadata,
val
) -> Any
-
ScenariosMetadata
time_series_uuid
.InfrastructureSystems.set_time_series_uuid!
— Methodset_time_series_uuid!(
+
ScenariosMetadata
time_series_uuid
.InfrastructureSystems.set_time_series_uuid!
— Methodset_time_series_uuid!(
value::InfrastructureSystems.SingleTimeSeriesMetadata,
val
) -> Any
-
SingleTimeSeriesMetadata
time_series_uuid
.InfrastructureSystems.show_recorder_events
— Methodshow_recorder_events(
+
SingleTimeSeriesMetadata
time_series_uuid
.InfrastructureSystems.show_recorder_events
— Methodshow_recorder_events(
::Type{T<:InfrastructureSystems.AbstractRecorderEvent},
filename::AbstractString;
...
@@ -1629,13 +1629,13 @@
kwargs...
)
T
: event typefilename::AbstractString
: filename containing recorder eventsfilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts an event of type T and returns a Bool. Apply this function to each event and only return events where the result is true.exclude_columns = Set{String}()
: Column names to exclude from the tablekwargs
: Passed to PrettyTablesshow_recorder_events(TestEvent, test_recorder.log)
-show_recorder_events(TestEvent, test_recorder.log, x -> x.val2 > 2)
InfrastructureSystems.show_supplemental_attributes
— Methodshow_supplemental_attributes(
+show_recorder_events(TestEvent, test_recorder.log, x -> x.val2 > 2)
InfrastructureSystems.show_supplemental_attributes
— Methodshow_supplemental_attributes(
component::InfrastructureSystems.InfrastructureSystemsComponent
)
-
InfrastructureSystems.show_time_series
— Methodshow_time_series(
+
InfrastructureSystems.show_time_series
— Methodshow_time_series(
owner::Union{InfrastructureSystems.InfrastructureSystemsComponent, InfrastructureSystems.SupplementalAttribute}
)
-
InfrastructureSystems.sql
— Functionsql(
+
InfrastructureSystems.sql
— Functionsql(
associations::InfrastructureSystems.SupplementalAttributeAssociations,
query::String
) -> DataFrames.DataFrame
@@ -1644,7 +1644,7 @@
query::String,
params
) -> DataFrames.DataFrame
-
InfrastructureSystems.sql
— Functionsql(
+
InfrastructureSystems.sql
— Functionsql(
store::InfrastructureSystems.TimeSeriesMetadataStore,
query::String
) -> DataFrames.DataFrame
@@ -1653,61 +1653,61 @@
query::String,
params
) -> DataFrames.DataFrame
-
InfrastructureSystems.strip_module_name
— Methodstrip_module_name(name::String) -> String
+
InfrastructureSystems.strip_module_name
— Methodstrip_module_name(name::String) -> String
import
or using
to load a package.julia> strip_module_name(PowerSystems.RegulationDevice{ThermalStandard})
"RegulationDevice{ThermalStandard}"
julia> string(nameof(PowerSystems.RegulationDevice{ThermalStandard}))
-"RegulationDevice"
InfrastructureSystems.supertypes
— Methodsupertypes(::Type{T}) -> Vector{Any}
+"RegulationDevice"
InfrastructureSystems.supertypes
— Methodsupertypes(::Type{T}) -> Vector{Any}
supertypes(::Type{T}, types) -> Any
-
InfrastructureSystems.tail
— Methodtail(
+
InfrastructureSystems.tail
— Methodtail(
time_series::InfrastructureSystems.SingleTimeSeries
) -> Any
-
InfrastructureSystems.test_generated_structs
— Methodtest_generated_structs(
+
InfrastructureSystems.test_generated_structs
— Methodtest_generated_structs(
descriptor_file,
existing_dir
) -> Bool
-
InfrastructureSystems.to
— Methodto(
+
InfrastructureSystems.to
— Methodto(
time_series::InfrastructureSystems.SingleTimeSeries,
timestamp
) -> InfrastructureSystems.SingleTimeSeries
-
InfrastructureSystems.to_dict
— Methodto_dict(
+
InfrastructureSystems.to_dict
— Methodto_dict(
data::InfrastructureSystems.SystemData
) -> Dict{String, Any}
-
InfrastructureSystems.to_json
— Methodto_json(
+
InfrastructureSystems.to_json
— Methodto_json(
obj::InfrastructureSystems.InfrastructureSystemsType;
pretty,
indent
) -> Any
-
InfrastructureSystems.to_json
— Methodto_json(
+
InfrastructureSystems.to_json
— Methodto_json(
obj::InfrastructureSystems.InfrastructureSystemsType;
pretty,
indent
) -> Any
-
InfrastructureSystems.to_records
— Methodto_records(
+
InfrastructureSystems.to_records
— Methodto_records(
associations::InfrastructureSystems.SupplementalAttributeAssociations
) -> Vector
-
InfrastructureSystems.transform_single_time_series!
— Methodtransform_single_time_series!(
+
InfrastructureSystems.transform_single_time_series!
— Methodtransform_single_time_series!(
data::InfrastructureSystems.SystemData,
_::Type{<:InfrastructureSystems.DeterministicSingleTimeSeries},
horizon::Dates.Period,
interval::Dates.Period
)
-
InfrastructureSystems.unregister_recorder!
— Methodunregister_recorder!(name::Symbol; close_io) -> Any
-
InfrastructureSystems.validate_exported_names
— Methodvalidate_exported_names(mod::Module) -> Bool
-
InfrastructureSystems.validate_struct
— Methodvalidate_struct(
+
InfrastructureSystems.unregister_recorder!
— Methodunregister_recorder!(name::Symbol; close_io) -> Any
+
InfrastructureSystems.validate_exported_names
— Methodvalidate_exported_names(mod::Module) -> Bool
+
InfrastructureSystems.validate_struct
— Methodvalidate_struct(
ist::InfrastructureSystems.InfrastructureSystemsType
) -> Bool
-
InfrastructureSystems.when
— Methodwhen(
+
InfrastructureSystems.when
— Methodwhen(
time_series::InfrastructureSystems.SingleTimeSeries,
period::Function,
t::Integer
) -> Any
-
InfrastructureSystems.@assert_op
— MacroAssertionError
if conditions like op(exp1, exp2)
are false
, where op
is a conditional infix operator.julia> a = 3; b = 4;
+
InfrastructureSystems.@assert_op
— MacroAssertionError
if conditions like op(exp1, exp2)
are false
, where op
is a conditional infix operator.julia> a = 3; b = 4;
julia> @assert_op a == b
ERROR: AssertionError: 3 == 4
julia> @assert_op a + 3 > b + 4
-ERROR: AssertionError: 6 > 8
InfrastructureSystems.@record
— Macroname::Symbol
: name of recorderevent::AbstractRecorderEvent
: event to record@record simulation TestEvent("start", 1, 2.0)
InfrastructureSystems.@scoped_enum
— Macrojulia> @scoped_enum Fruit APPLE = 1 ORANGE = 2
+ERROR: AssertionError: 6 > 8
InfrastructureSystems.@record
— Macroname::Symbol
: name of recorderevent::AbstractRecorderEvent
: event to record@record simulation TestEvent("start", 1, 2.0)
InfrastructureSystems.@scoped_enum
— Macrojulia> @scoped_enum Fruit APPLE = 1 ORANGE = 2
julia> value = Fruit.APPLE
Fruit.APPLE = 1
@@ -1718,4 +1718,4 @@
julia> @scoped_enum(Fruit,
APPLE = 1, # comment
ORANGE = 2, # comment
-)
Settings
This document was generated with Documenter.jl version 1.5.0 on Friday 2 August 2024. Using Julia version 1.10.4.