-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathtoc.yaml
70 lines (70 loc) · 3.81 KB
/
toc.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
root: index
subtrees:
- caption: Contents
entries:
- file: README.md
title: Introduction
- file: examples/tutorials/index.md
title: Tutorials
entries:
- file: examples/tutorials/basic/index.md
title: Basic
- file: examples/tutorials/tf/index.md
title: TensorFlow
entries:
- file: examples/tutorials/tf/DLRM-Ranking-Model.ipynb
title: DLRM Ranking Model
# - file: examples/tutorials/tf/TwoTower-Retrieval-Model.ipynb
# title: TwoTower Retrieval Model
- file: examples/tutorials/pytorch/index.md
title: PyTorch
- file: guide/recommender_system_guide.rst
title: Recommender System Guide
- file: examples/index
title: Example Notebooks
subtrees:
- titlesonly: True
entries:
- file: examples/getting-started-movielens/index
title: Getting Started using the MovieLens Dataset
entries:
- file: examples/getting-started-movielens/01-Download-Convert.ipynb
title: MovieLens Download and Convert
- file: examples/getting-started-movielens/02-ETL-with-NVTabular.ipynb
title: Feature Engineering with NVTabular
- file: examples/getting-started-movielens/03-Training-with-HugeCTR.ipynb
title: Training with HugeCTR
- file: examples/getting-started-movielens/03-Training-with-TF.ipynb
title: Training with TensorFlow
- file: examples/getting-started-movielens/03-Training-with-PyTorch.ipynb
title: Training with PyTorch
- file: examples/getting-started-movielens/04-Triton-Inference-with-HugeCTR.ipynb
title: Serving the HugeCTR Model with Triton
- file: examples/getting-started-movielens/04-Triton-Inference-with-TF.ipynb
title: Serving the TensorFlow Model with Triton
- file: examples/Building-and-deploying-multi-stage-RecSys/index.md
entries:
- file: examples/Building-and-deploying-multi-stage-RecSys/01-Building-Recommender-Systems-with-Merlin.ipynb
title: Building the Recommender System
- file: examples/Building-and-deploying-multi-stage-RecSys/02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb
title: Deploying the Recommender System with Triton
- file: examples/sagemaker-tensorflow/index.md
title: Merlin and AWS SageMaker
entries:
- file: examples/sagemaker-tensorflow/sagemaker-merlin-tensorflow.ipynb
- file: examples/scaling-criteo/index.md
entries:
- file: examples/scaling-criteo/01-Download-Convert.ipynb
title: Criteo Download and Convert
- file: examples/scaling-criteo/02-ETL-with-NVTabular.ipynb
title: Feature Engineering with NVTabular
- file: examples/scaling-criteo/03-Training-with-HugeCTR.ipynb
title: Training with HugeCTR
- file: examples/scaling-criteo/03-Training-with-Merlin-Models-TensorFlow.ipynb
title: Training with Merlin Models and TensorFlow
- file: examples/scaling-criteo/04-Triton-Inference-with-HugeCTR.ipynb
title: Deploy the HugeCTR Model with Triton
- file: examples/scaling-criteo/04-Triton-Inference-with-Merlin-Models-TensorFlow.ipynb
title: Deploy the TensorFlow Model with Triton
- file: containers.rst
- file: support_matrix/index.rst