-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmmlu.py
498 lines (435 loc) · 18.3 KB
/
mmlu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# MIT License
#
# Copyright (c) 2020 Dan Hendrycks
# Copyright (c) 2023 Deep Cognition and Language Research (DeCLaRe) Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Not a contribution
# Changes made by NVIDIA CORPORATION & AFFILIATES or otherwise documented as
# NVIDIA-proprietary are not a contribution and subject to the following terms and conditions:
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Adapted from https://github.com/declare-lab/instruct-eval
Helper script to compare TRTLLM and HF models on the MMLU dataset.
Example usage:
mkdir data; wget https://people.eecs.berkeley.edu/~hendrycks/data.tar -O data/mmlu.tar
tar -xf data/mmlu.tar -C data && mv data/data data/mmlu
python mmlu.py --hf_model_dir <HF model path> --engine_dir <TRTLLM engine path> --test_trt_llm
python mmlu.py --hf_model_dir <HF model path> --engine_dir <TRTLLM engine path> --test_hf
"""
import argparse
import os
import random
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from tqdm import tqdm
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoModelForSeq2SeqLM, AutoTokenizer,
GenerationConfig)
from utils import (add_common_args, load_tokenizer, prepare_enc_dec_inputs,
read_model_name)
import tensorrt_llm
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelRunner
if PYTHON_BINDINGS:
from tensorrt_llm.runtime import ModelRunnerCpp
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DTYPE_STR_MAPPING = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16,
}
RAND_SEED = 1234
def get_choices():
return ["A", "B", "C", "D"]
def get_subcategories():
return {
"abstract_algebra": ["math"],
"anatomy": ["health"],
"astronomy": ["physics"],
"business_ethics": ["business"],
"clinical_knowledge": ["health"],
"college_biology": ["biology"],
"college_chemistry": ["chemistry"],
"college_computer_science": ["computer science"],
"college_mathematics": ["math"],
"college_medicine": ["health"],
"college_physics": ["physics"],
"computer_security": ["computer science"],
"conceptual_physics": ["physics"],
"econometrics": ["economics"],
"electrical_engineering": ["engineering"],
"elementary_mathematics": ["math"],
"formal_logic": ["philosophy"],
"global_facts": ["other"],
"high_school_biology": ["biology"],
"high_school_chemistry": ["chemistry"],
"high_school_computer_science": ["computer science"],
"high_school_european_history": ["history"],
"high_school_geography": ["geography"],
"high_school_government_and_politics": ["politics"],
"high_school_macroeconomics": ["economics"],
"high_school_mathematics": ["math"],
"high_school_microeconomics": ["economics"],
"high_school_physics": ["physics"],
"high_school_psychology": ["psychology"],
"high_school_statistics": ["math"],
"high_school_us_history": ["history"],
"high_school_world_history": ["history"],
"human_aging": ["health"],
"human_sexuality": ["culture"],
"international_law": ["law"],
"jurisprudence": ["law"],
"logical_fallacies": ["philosophy"],
"machine_learning": ["computer science"],
"management": ["business"],
"marketing": ["business"],
"medical_genetics": ["health"],
"miscellaneous": ["other"],
"moral_disputes": ["philosophy"],
"moral_scenarios": ["philosophy"],
"nutrition": ["health"],
"philosophy": ["philosophy"],
"prehistory": ["history"],
"professional_accounting": ["other"],
"professional_law": ["law"],
"professional_medicine": ["health"],
"professional_psychology": ["psychology"],
"public_relations": ["politics"],
"security_studies": ["politics"],
"sociology": ["culture"],
"us_foreign_policy": ["politics"],
"virology": ["health"],
"world_religions": ["philosophy"],
}
def get_categories():
return {
"STEM": [
"physics",
"chemistry",
"biology",
"computer science",
"math",
"engineering",
],
"humanities": ["history", "philosophy", "law"],
"social sciences": [
"politics",
"culture",
"economics",
"geography",
"psychology",
],
"other (business, health, misc.)": ["other", "business", "health"],
}
def format_subject(subject):
line = subject.split("_")
s = ""
for entry in line:
s += " " + entry
return s
def format_example(df, idx, include_answer=True):
prompt = df.iloc[idx, 0]
k = df.shape[1] - 2
for j in range(k):
prompt += "\n{}. {}".format(get_choices()[j], df.iloc[idx, j + 1])
prompt += "\nAnswer:"
if include_answer:
prompt += " {}\n\n".format(df.iloc[idx, k + 1])
return prompt
def gen_prompt(train_df, subject, k=-1):
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
format_subject(subject))
if k == -1:
k = train_df.shape[0]
for i in range(k):
prompt += format_example(train_df, i)
return prompt
def evaluate(args, subject, pipeline, dev_df, test_df):
rank = tensorrt_llm.mpi_rank()
cors = []
all_probs = []
for i in range(test_df.shape[0]):
if i >= args.max_ite:
break
# get prompt and make sure it fits
k = args.ntrain
prompt_end = format_example(test_df, i, include_answer=False)
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
while not pipeline.check_valid_length(prompt) and k > 0:
k -= 1
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
label = test_df.iloc[i, test_df.shape[1] - 1]
pred = pipeline(prompt)
if rank == 0:
probs = [0 for _ in get_choices()]
cor = pred.strip().startswith(label)
cors.append(cor)
all_probs.append(probs)
if rank == 0:
acc = np.mean(cors)
cors = np.array(cors)
all_probs = np.array(all_probs)
print("Average accuracy {:.3f} - {}".format(acc, subject))
return cors, acc, all_probs
else:
return None, 0, None
def get_tokenizer(ckpt_path, max_seq_len):
print(f"Initializing tokenizer from {ckpt_path}")
tokenizer = AutoTokenizer.from_pretrained(
ckpt_path,
model_max_length=max_seq_len,
padding_side="left",
trust_remote_code=True,
)
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
class Pipeline:
def __init__(self, tokenizer, model, model_name, pad_id, end_id,
max_attention_window_size, is_enc_dec, hf_model_dir,
engine_dir):
self.tokenizer = tokenizer
self.model = model
self.model_name = model_name
self.pad_id = pad_id
self.end_id = end_id
self.max_attention_window_size = max_attention_window_size
self.output_len = 2
self.is_enc_dec = is_enc_dec
self.decoder_start_token_id = None
self.engine_dir = engine_dir
if self.is_enc_dec:
self.decoder_start_token_id = AutoConfig.from_pretrained(
hf_model_dir).decoder_start_token_id
def __call__(self, prompt):
rank = tensorrt_llm.mpi_rank()
# Run the model in batch size 1 and beam size 1
inputs = self.tokenizer.encode(prompt, return_tensors="pt").squeeze(0)
batch_input_ids = [inputs]
# For multi-choice tasks like MMLU, we don't need to adjust following parameters
output_len = self.output_len
top_k = 1
top_p = 0.0
input_lengths = [x.size(0) for x in batch_input_ids]
with torch.no_grad():
if isinstance(self.model, nn.Module):
# Left padding for HF
max_length = max(input_lengths)
paddings = [
torch.ones(max_length - l, dtype=torch.int32) * self.pad_id
for l in input_lengths
]
batch_input_ids = [
torch.cat([pad, x])
for x, pad in zip(batch_input_ids, paddings)
]
batch_input_ids = torch.stack(batch_input_ids)
batch_input_ids = batch_input_ids.cuda()
if self.is_enc_dec:
batch_decoder_input_ids = torch.IntTensor(
[[self.decoder_start_token_id]]).to('cuda')
batch_decoder_input_ids = batch_decoder_input_ids.repeat(
(batch_input_ids.shape[0], 1))
with torch.no_grad():
# Use default temperature and top_k
outputs = self.model.generate(
batch_input_ids,
max_new_tokens=output_len,
top_k=top_k,
decoder_input_ids=batch_decoder_input_ids
if self.is_enc_dec else None)
if not self.is_enc_dec:
output_ids = outputs[0, input_lengths[0]:]
else:
output_ids = outputs[0]
elif isinstance(self.model, ModelRunnerCpp) or isinstance(
self.model, ModelRunner):
if self.is_enc_dec:
encoder_input_ids, encoder_input_features, encoder_output_lengths, decoder_input_ids = prepare_enc_dec_inputs(
batch_input_ids, self.model_name, self.engine_dir, None)
outputs = self.model.generate(
batch_input_ids=decoder_input_ids
if self.is_enc_dec else batch_input_ids,
encoder_input_ids=encoder_input_ids
if self.is_enc_dec else None,
encoder_input_features=encoder_input_features
if self.is_enc_dec else None,
encoder_output_lengths=encoder_output_lengths
if self.is_enc_dec else None,
max_new_tokens=output_len,
max_attention_window_size=self.max_attention_window_size,
end_id=self.end_id,
pad_id=self.pad_id,
top_k=top_k,
top_p=top_p,
)
torch.cuda.synchronize()
if rank == 0:
if not self.is_enc_dec:
output_ids = outputs[0, 0, input_lengths[0]:]
else:
output_ids = outputs[0, 0]
if rank == 0:
return self.tokenizer.decode(output_ids, skip_special_tokens=True)
else:
return None
def check_valid_length(self, prompt):
if isinstance(self.model, nn.Module):
return True
input_len = len(self.tokenizer.encode(prompt))
return input_len <= self.model.max_input_len and input_len + self.output_len <= self.model.max_seq_len
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir",
type=str,
default="data/mmlu",
help=("Path to the data directory. If not available, "
"download https://people.eecs.berkeley.edu/~hendrycks/data.tar"),
)
parser.add_argument("--ntrain", type=int, default=5)
parser.add_argument("--max_input_length", type=int, default=2048)
parser.add_argument("--test_trt_llm", action="store_true")
parser.add_argument("--test_hf", action="store_true")
parser.add_argument('--check_accuracy', action='store_true')
parser.add_argument('--accuracy_threshold', type=float, default=0.3)
parser.add_argument('--max_ite', type=int, default=10000000)
parser = add_common_args(parser)
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.tokenizer_dir is None:
args.tokenizer_dir = args.hf_model_dir
random.seed(RAND_SEED)
np.random.seed(RAND_SEED)
runtime_rank = tensorrt_llm.mpi_rank()
os.path.dirname(os.path.abspath(__file__))
data_fullpath = os.path.join(args.data_dir, "test")
subjects = sorted([
f.split("_test.csv")[0] for f in os.listdir(data_fullpath)
if "_test.csv" in f
])
all_cors = []
subcat_cors = {
subcat: []
for subcat_lists in get_subcategories().values()
for subcat in subcat_lists
}
cat_cors = {cat: [] for cat in get_categories()}
# different handling if encoder-decoder models
is_enc_dec = {'encoder', 'decoder'}.issubset({
name
for name in os.listdir(args.engine_dir)
if os.path.isdir(os.path.join(args.engine_dir, name))
})
model_name, model_version = read_model_name(
args.engine_dir if not is_enc_dec else os.path.
join(args.engine_dir, 'encoder'))
tokenizer, pad_id, end_id = load_tokenizer(
tokenizer_dir=args.tokenizer_dir,
vocab_file=args.vocab_file,
model_name=model_name,
model_version=model_version,
)
if args.test_trt_llm:
assert not args.test_hf, "Cannot test both TRT-LLM and HF"
runner_cls = ModelRunner if not PYTHON_BINDINGS else ModelRunnerCpp
runner_kwargs = {}
if PYTHON_BINDINGS:
runner_kwargs.update(max_beam_width=1)
runner_kwargs.update(
is_enc_dec=is_enc_dec,
max_tokens_in_paged_kv_cache=args.max_tokens_in_paged_kv_cache,
kv_cache_enable_block_reuse=args.kv_cache_enable_block_reuse,
kv_cache_free_gpu_memory_fraction=args.
kv_cache_free_gpu_memory_fraction,
cross_kv_cache_fraction=args.cross_kv_cache_fraction
if is_enc_dec else None,
enable_chunked_context=args.enable_chunked_context,
multi_block_mode=args.multi_block_mode)
model = runner_cls.from_dir(engine_dir=args.engine_dir,
rank=runtime_rank,
**runner_kwargs)
else:
assert args.test_hf, "Must test either TRT-LLM or HF"
if 'GLM' in model_name and model_version == 'glm':
auto_model_cls = AutoModelForSeq2SeqLM
elif 'GLM' in model_name and model_version == 'chatglm':
auto_model_cls = AutoModel
elif is_enc_dec:
auto_model_cls = AutoModelForSeq2SeqLM
else:
auto_model_cls = AutoModelForCausalLM
model = auto_model_cls.from_pretrained(
args.hf_model_dir,
trust_remote_code=True,
torch_dtype=DTYPE_STR_MAPPING[args.hf_data_type],
device_map="auto" if args.hf_device_map_auto else None,
)
if not args.hf_device_map_auto:
model.cuda()
if model_name == "qwen":
model.generation_config = GenerationConfig.from_pretrained(
args.hf_model_dir, trust_remote_code=True)
pipeline = Pipeline(tokenizer, model, model_name, pad_id, end_id,
args.max_attention_window_size, is_enc_dec,
args.hf_model_dir, args.engine_dir)
for subject in tqdm(subjects):
dev_df = pd.read_csv(os.path.join(args.data_dir, "dev",
subject + "_dev.csv"),
header=None)[:args.ntrain]
test_df = pd.read_csv(os.path.join(args.data_dir, "test",
subject + "_test.csv"),
header=None)
cors, acc, probs = evaluate(args, subject, pipeline, dev_df, test_df)
subcats = get_subcategories()[subject]
for subcat in subcats:
subcat_cors[subcat].append(cors)
for key in get_categories().keys():
if subcat in get_categories()[key]:
cat_cors[key].append(cors)
all_cors.append(cors)
if runtime_rank == 0:
for subcat in subcat_cors:
subcat_acc = np.mean(np.concatenate(subcat_cors[subcat]))
print("Average accuracy {:.3f} - {}".format(subcat_acc, subcat))
for cat in cat_cors:
cat_acc = np.mean(np.concatenate(cat_cors[cat]))
print("Average accuracy {:.3f} - {}".format(cat_acc, cat))
weighted_acc = np.mean(np.concatenate(all_cors))
print("Average accuracy: {:.3f}".format(weighted_acc))
if args.check_accuracy:
assert weighted_acc >= args.accuracy_threshold, f"Expected accuracy >= {args.accuracy_threshold} while got {weighted_acc}"
return weighted_acc
if __name__ == "__main__":
main()