diff --git a/src/main/cpp/src/hive_hash.cu b/src/main/cpp/src/hive_hash.cu index d99f84d971..8a40b01d1b 100644 --- a/src/main/cpp/src/hive_hash.cu +++ b/src/main/cpp/src/hive_hash.cu @@ -246,7 +246,7 @@ class hive_device_row_hasher { * @brief Functor to compute the hive hash value for a nested column. * * This functor produces the same result as "HiveHash" in Spark for structs and lists. - * The pseudocode of Spark's HiveHash function for structs and lists is as follows: + * The pseudocode of Spark's HiveHash function for structs is as follows: * * hive_hash_value_t hive_hash(NestedType element) { * hive_hash_value_t hash = HIVE_INIT_HASH; @@ -256,6 +256,9 @@ class hive_device_row_hasher { * return hash; * } * + * In the cases of lists, the hash value is computed by a similar way but we iterate through the list + * elements instead of through the child columns' elements. + * * This functor uses a stack to simulate the recursive process of the above pseudocode. * When an element is popped from the stack, it means that the hash value of it has been * computed. Therefore, we should update the parent's `cur_hash` upon popping the element.