Skip to content

Latest commit

 

History

History
73 lines (52 loc) · 5.18 KB

README.md

File metadata and controls

73 lines (52 loc) · 5.18 KB

3D Gaussian Mapping: Simultaneous 2D Segmentation and 3D Mapping with Self-Supervision

Memorize What Matters: Emergent Scene Decomposition from Multitraverse, NeurIPS 2024 (Spotlight).

Yiming Li, Zehong Wang, Yue Wang, Zhiding Yu, Zan Gojcic, Marco Pavone, Chen Feng, Jose M. Alvarez

[PDF] [Project]

Emerged 2D segmentation from nine traversals of the same location, collected on different dates: 11-19-2021, 11-22-2021, 11-30-2021, 12-01-2021, 12-06-2021, 12-07-2021, 12-14-2021, 12-15-2021, and 12-16-2021.

Video 1119 Video 1122 Video 1130
Video 1201 Video 1206 Video 1207
Video 1214 Video 1215 Video 1216

News

  • [2024/09]: Our paper is accepted as a NeurIPS 2024 Spotlight ⚡.
  • [2024/05]: Our paper is on arxiv.

Abstract

Humans naturally retain memories of permanent elements, while ephemeral moments often slip through the cracks of memory. This selective retention is crucial for robotic perception, localization, and mapping. To endow robots with this capability, we introduce 3D Gaussian Mapping (3DGM), a self-supervised, camera-only offline mapping framework grounded in 3D Gaussian Splatting. 3DGM converts multitraverse RGB videos from the same region into a Gaussian-based environmental map while concurrently performing 2D ephemeral object segmentation. Our key observation is that the environment remains consistent across traversals, while objects frequently change. This allows us to exploit self-supervision from repeated traversals to achieve environment-object decomposition. More specifically, 3DGM formulates multitraverse environmental mapping as a robust differentiable rendering problem, treating pixels of the environment and objects as inliers and outliers, respectively. Using robust feature distillation, feature residuals mining, and robust optimization, 3DGM jointly performs 3D mapping and 2D segmentation without human intervention. We build the Mapverse benchmark, sourced from the Ithaca365 and nuPlan datasets, to evaluate our method in unsupervised 2D segmentation, 3D reconstruction, and neural rendering. Extensive results verify the effectiveness and potential of our method for self-driving and robotics.

Method

space-1.jpg
Overall framework of 3DGM. Given multitraverse RGB videos, 3DGM outputs a Gaussian-based environment map (EnvGS) and 2D ephemerality segmentation (EmerSeg) for the input images. Note that the proposed framework is LiDAR-free and self-supervised.

Mapverse

We build the Mapping and segmentation through multitraverse (Mapverse) benchmark, sourced from the Ithaca365 and nuPlan datasets to evaluate our method in three tasks: unsupervised 2D segmentation, 3D reconstruction, and neural rendering. Mapverse features 40 locations, each with no less than 10 traversals, totaling 467 driving video clips and 35,304 images.

space-1.jpg
Selected Image Frames of Mapverse-Ithaca365. Each row represents image observations of the same location captured during different traversals, with five traversals shown for brevity.
space-1.jpg
Selected Image Frames of Mapverse-nuPlan. Each row represents image observations of the same location captured during different traversals, with five traversals shown for brevity.

Bibtex

If this work is helpful for your research, please cite the following BibTeX entry.

@inproceedings{li2024memorize,
      title={Memorize What Matters: Emergent Scene Decomposition from Multitraverse}, 
      author={Yiming Li and Zehong Wang and Yue Wang and Zhiding Yu and Zan Gojcic and Marco Pavone and Chen Feng and Jose M. Alvarez},
      booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
      year={2024}
}