-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathinception_score.py
executable file
·58 lines (48 loc) · 2.53 KB
/
inception_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html
"""Inception Score (IS)."""
import numpy as np
import tensorflow as tf
import dnnlib.tflib as tflib
from metrics import metric_base
from training import misc
#----------------------------------------------------------------------------
class IS(metric_base.MetricBase):
def __init__(self, num_images, num_splits, minibatch_per_gpu, **kwargs):
super().__init__(**kwargs)
self.num_images = num_images
self.num_splits = num_splits
self.minibatch_per_gpu = minibatch_per_gpu
def _evaluate(self, Gs, Gs_kwargs, num_gpus):
minibatch_size = num_gpus * self.minibatch_per_gpu
inception = misc.load_pkl('https://nvlabs-fi-cdn.nvidia.com/stylegan/networks/metrics/inception_v3_softmax.pkl')
activations = np.empty([self.num_images, inception.output_shape[1]], dtype=np.float32)
# Construct TensorFlow graph.
result_expr = []
for gpu_idx in range(num_gpus):
with tf.device('/gpu:%d' % gpu_idx):
Gs_clone = Gs.clone()
inception_clone = inception.clone()
latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
labels = self._get_random_labels_tf(self.minibatch_per_gpu)
images = Gs_clone.get_output_for(latents, labels, **Gs_kwargs)
images = tflib.convert_images_to_uint8(images)
result_expr.append(inception_clone.get_output_for(images))
# Calculate activations for fakes.
for begin in range(0, self.num_images, minibatch_size):
self._report_progress(begin, self.num_images)
end = min(begin + minibatch_size, self.num_images)
activations[begin:end] = np.concatenate(tflib.run(result_expr), axis=0)[:end-begin]
# Calculate IS.
scores = []
for i in range(self.num_splits):
part = activations[i * self.num_images // self.num_splits : (i + 1) * self.num_images // self.num_splits]
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
kl = np.mean(np.sum(kl, 1))
scores.append(np.exp(kl))
self._report_result(np.mean(scores), suffix='_mean')
self._report_result(np.std(scores), suffix='_std')
#----------------------------------------------------------------------------