-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
370 lines (287 loc) · 14.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import tensorflow as tf
from tqdm import tqdm
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Conv2D,Add
from tensorflow.keras.layers import Conv2DTranspose,Activation
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import Activation,MaxPool2D
from tensorflow.keras.layers import Concatenate,Dense,Multiply,Flatten
from tensorflow.keras.layers import Dropout,Reshape,GlobalMaxPooling2D,GlobalAveragePooling2D
from tensorflow.keras.layers import BatchNormalization,MaxPooling2D
from tensorflow.keras.models import load_model
import torch
import torch.nn as nn
import torch.nn.functional as F
import pdb
#from utils.utils import initialize_weights
import numpy as np
import torch
from torch.nn.parameter import Parameter
import math
def Autoencoder(input_shape=(512, 512, 3)):
backbone = tf.keras.applications.EfficientNetB7(weights='imagenet',
include_top=False
,input_shape=input_shape)
input = backbone.input
start_neurons = 8
conv4 = backbone.layers[-3].output
conv4 = LeakyReLU(alpha=0.1)(conv4)
convm = Conv2D(start_neurons * 32, (3, 3), activation=None, padding="same")(conv4)
convm = LeakyReLU(alpha=0.1)(convm)
deconv4 = Conv2DTranspose(start_neurons * 16, (3, 3), strides=(2, 2), padding="same")(convm)
uconv4 = Conv2D(start_neurons * 16, (3, 3), activation=None, padding="same")(deconv4)
uconv4 = LeakyReLU(alpha=0.1)(uconv4)
deconv3 = Conv2DTranspose(start_neurons * 8, (3, 3), strides=(2, 2), padding="same")(uconv4)
uconv3 = Conv2D(start_neurons * 8, (3, 3), activation=None, padding="same")(deconv3)
uconv3 = LeakyReLU(alpha=0.1)(uconv3)
deconv2 = Conv2DTranspose(start_neurons * 4, (3, 3), strides=(2, 2), padding="same")(uconv3)
uconv2 = Conv2D(start_neurons * 4, (3, 3), activation=None, padding="same")(deconv2)
uconv2 = LeakyReLU(alpha=0.1)(uconv2)
deconv1 = Conv2DTranspose(start_neurons * 2, (3, 3), strides=(2, 2), padding="same")(uconv2)
uconv1 = Conv2D(start_neurons * 2, (3, 3), activation=None, padding="same")(deconv1)
uconv1 = LeakyReLU(alpha=0.1)(uconv1)
uconv0 = Conv2DTranspose(start_neurons * 1, (3, 3), strides=(2, 2), padding="same")(uconv1)
uconv0 = Conv2D(start_neurons * 1, (3, 3), activation=None, padding="same")(uconv0)
uconv0 = LeakyReLU(alpha=0.1)(uconv0)
output_layer = Conv2D(3, (1,1), padding="same", activation="sigmoid")(uconv0)
model = tf.keras.models.Model(input, output_layer)
return model
def initialize_weights(module):
for m in module.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
class Attn_Net_Gated(nn.Module):
def __init__(self, L = 2560, D = 512, dropout = False, n_classes = 1):
super(Attn_Net_Gated, self).__init__()
self.attention_a = [
nn.Linear(L, D),
nn.Tanh()]
self.attention_b = [nn.Linear(L, D),
nn.Sigmoid()]
if dropout:
self.attention_a.append(nn.Dropout(0.4))
self.attention_b.append(nn.Dropout(0.4))
self.attention_a = nn.Sequential(*self.attention_a)
self.attention_b = nn.Sequential(*self.attention_b)
self.attention_c = nn.Linear(D, n_classes)
def forward(self, x):
a = self.attention_a(x)
b = self.attention_b(x)
A = a.mul(b)
A = self.attention_c(A) # N x n_classes
return A, x
class Attn_Net(nn.Module):
def __init__(self, L = 1024, D = 512, dropout = False, n_classes = 1):
super(Attn_Net, self).__init__()
self.module = [
nn.Linear(L, D),
nn.Tanh()]
if dropout:
self.module.append(nn.Dropout(0.4))
self.module.append(nn.Linear(D, n_classes))
self.module = nn.Sequential(*self.module)
def forward(self, x):
return self.module(x), x # N x n_classes
class Model1(nn.Module):
# def __init__(self):
#super(Model, self).__init__()
def __init__(self, gate = True, hidden_dim = 512, out_dim = 256,size_arg = "small", dropout = False, n_classes = 5, lr = 5e-5,weight_decay = 10E-6):
super(Model1, self).__init__()
self.size_dict = {"small": [2560, 512, 256], "big": [1024, 1, 384]}
size = self.size_dict[size_arg]
fc = [nn.Linear(size[0], hidden_dim), nn.ReLU()]
if dropout:
fc.append(nn.Dropout(0.4))
if gate:
attention_net = Attn_Net_Gated(L = hidden_dim, D = out_dim, dropout = dropout, n_classes = 1)
else:
attention_net = Attn_Net(L = hidden_dim, D = out_dim, dropout = dropout, n_classes = 1)
fc.append(attention_net)
self.attention_net = nn.Sequential(*fc)
self.classifier = nn.Linear(hidden_dim, n_classes)
initialize_weights(self)
self.criterion = nn.CrossEntropyLoss()
#self.criterion = nn.NLLLoss()
self.optimizer = torch.optim.Adam(self.parameters(),lr=lr, weight_decay=weight_decay)
def forward(self, h, return_features=False, attention_only=False):
A, h = self.attention_net(h)
#print(A)
A = torch.transpose(A, 1, 0)
if attention_only:
return A
A_raw = A
A = F.softmax(A, dim=1)
M = torch.mm(A, h)
# print(A)
logits = self.classifier(M)
Y_hat = torch.topk(logits, 1, dim = 1)[1]
Y_prob = F.softmax(logits, dim = 1)
results_dict = {}
if return_features:
results_dict.update({'features': M})
return logits, Y_prob, Y_hat, A_raw, results_dict,M
class MIL_Attention_fc_surv(Model1):
def __init__(self, gate = True, size_arg = "small", dropout = False, n_classes = 5):
super(MIL_Attention_fc_surv, self).__init__(gate = gate, size_arg = size_arg, dropout = dropout, n_classes = n_classes)
def forward(self, h, return_features=False, attention_only=False):
A, h = self.attention_net(h)
A = torch.transpose(A, 1, 0)
if attention_only:
return A
A_raw = A
A = F.softmax(A, dim=1)
M = torch.mm(A, h)
logits = self.classifier(M)
Y_hat = torch.topk(logits, 1, dim = 1)[1]
hazards = torch.sigmoid(logits)
S = torch.cumprod(1 - hazards, dim=1)
results_dict = {}
if return_features:
results_dict.update({'features': M})
return hazards, S, Y_hat, A_raw, results_dict, M
class GraphConvolution(nn.Module):
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = input @ self.weight # X * W
output = adj @ support # A * X * W
if self.bias is not None: # A * X * W + b
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, gcn_feature_dim = 2560, gcn_hid_dim = 512, gcn_out_dim = 64):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(gcn_feature_dim, gcn_hid_dim)
self.ln1 = nn.LayerNorm(gcn_hid_dim)
self.gc3 = GraphConvolution(gcn_hid_dim, gcn_hid_dim)
self.ln3 = nn.LayerNorm(gcn_hid_dim)
self.gc2 = GraphConvolution(gcn_hid_dim, gcn_out_dim)
self.ln2 = nn.LayerNorm(gcn_out_dim)
self.relu1 = nn.LeakyReLU(0.2,inplace=True)
self.relu3 = nn.LeakyReLU(0.2,inplace=True)
self.relu4 = nn.LeakyReLU(0.2,inplace=True)
self.relu2 = nn.LeakyReLU(0.2,inplace=True)
def forward(self, x, adj): # x.shape = (seq_len, GCN_FEATURE_DIM); adj.shape = (seq_len, seq_len)
x = self.gc1(x, adj) # x.shape = (seq_len, GCN_HIDDEN_DIM)
x = self.relu1(self.ln1(x))
x = self.gc3(x, adj) # x.shape = (seq_len, GCN_HIDDEN_DIM)
x = self.relu3(self.ln3(x))
x = self.gc2(x, adj)
output = self.relu2(self.ln2(x)) # output.shape = (seq_len, GCN_OUTPUT_DIM)
return output
class Attention(nn.Module):
def __init__(self, input_dim, dense_dim, n_heads):
super(Attention, self).__init__()
self.input_dim = input_dim
self.dense_dim = dense_dim
self.n_heads = n_heads
self.fc1 = nn.Linear(self.input_dim, self.dense_dim)
self.fc2 = nn.Linear(self.dense_dim, self.n_heads)
def softmax(self, input, axis=1):
input_size = input.size()
trans_input = input.transpose(axis, len(input_size) - 1)
trans_size = trans_input.size()
input_2d = trans_input.contiguous().view(-1, trans_size[-1])
soft_max_2d = torch.softmax(input_2d, dim=1)
soft_max_nd = soft_max_2d.view(*trans_size)
return soft_max_nd.transpose(axis, len(input_size) - 1)
def forward(self, input): # input.shape = (1, seq_len, input_dim)
x = torch.tanh(self.fc1(input)) # x.shape = (1, seq_len, dense_dim)
x = self.fc2(x) # x.shape = (1, seq_len, attention_hops)
x = self.softmax(x, 1)
attention = x.transpose(1, 2) # attention.shape = (1, attention_hops, seq_len)
return attention
class Model2(nn.Module):
def __init__(self, gcn_feature_dim = 2560, gcn_hid_dim = 512, gcn_out_dim = 64,dense_dim = 16,n_heads = 6, n_class = 5, lr = 1e-5,weight_decay = 10E-7):
super(Model2, self).__init__()
self.gcn = GCN(gcn_feature_dim = 2560, gcn_hid_dim = 512, gcn_out_dim = 64)
self.attention = Attention(gcn_out_dim, dense_dim, n_heads)
self.fc_final = nn.Linear(gcn_out_dim, n_class)
self.criterion = nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.parameters(), lr=lr, weight_decay=weight_decay)
def forward(self, x, adj): # x.shape = (seq_len, FEATURE_DIM); adj.shape = (seq_len, seq_len)
x = x.float()
x = self.gcn(x, adj) # x.shape = (seq_len, GAT_OUTPUT_DIM)
x = x.unsqueeze(0).float() # x.shape = (1, seq_len, GAT_OUTPUT_DIM)
att = self.attention(x) # att.shape = (1, ATTENTION_HEADS, seq_len)
node_feature_embedding = att @ x # output.shape = (1, ATTENTION_HEADS, GAT_OUTPUT_DIM)
node_feature_embedding_avg = torch.sum(node_feature_embedding,
1) / self.attention.n_heads # node_feature_embedding_avg.shape = (1, GAT_OUTPUT_DIM)
logits = torch.sigmoid(self.fc_final(node_feature_embedding_avg)) # output.shape = (1, NUM_CLASSES)
Y_hat = torch.topk(logits, 1, dim = 1)[1]
Y_prob = torch.softmax(logits, dim = 1)
return logits, Y_hat, Y_prob
class GraphAttentionLayer(nn.Module):
def __init__(self, inp, out, slope):
super(GraphAttentionLayer, self).__init__()
self.W = nn.Linear(inp, out, bias=False)
self.a = nn.Linear(out*2, 1, bias=False)
self.leakyrelu = nn.LeakyReLU(slope)
self.softmax = nn.Softmax(dim=1)
def forward(self, h, adj):
Wh = self.W(h)
Whcat = self.Wh_concat(Wh, adj)
e = self.leakyrelu(self.a(Whcat).squeeze(2))
zero_vec = -9e15*torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = self.softmax(attention)
h_hat = torch.mm(attention, Wh)
return h_hat
def Wh_concat(self, Wh, adj):
N = Wh.size(0)
Whi = Wh.repeat_interleave(N, dim=0)
Whj = Wh.repeat(N, 1)
WhiWhj = torch.cat([Whi, Whj], dim=1)
WhiWhj = WhiWhj.view(N, N, Wh.size(1)*2)
return WhiWhj
class MultiHeadGAT(nn.Module):
def __init__(self, inp, out, heads, slope):
super(MultiHeadGAT, self).__init__()
self.attentions = nn.ModuleList([GraphAttentionLayer(inp, out, slope) for _ in range(heads)])
self.tanh = nn.Tanh()
def forward(self, h, adj):
heads_out = [att(h, adj) for att in self.attentions]
out = torch.stack(heads_out, dim=0).mean(0)
return self.tanh(out)
class GAT(nn.Module):
def __init__(self, gcn_feature_dim= 2560, gcn_hid_dim = 256, gcn_out_dim =64,dense_dim = 16, gat_heads=4, slope=0.01,n_heads = 6, n_class = 5, lr = 1e-5,weight_decay = 10E-7):
super(GAT, self).__init__()
self.gat1 = MultiHeadGAT(gcn_feature_dim, gcn_hid_dim, gat_heads, slope)
self.gat2 = MultiHeadGAT(gcn_hid_dim, gcn_out_dim, gat_heads, slope)
self.attention = Attention(gcn_out_dim, dense_dim, n_heads)
#self.fc_final = nn.Linear(GCN_OUTPUT_DIM, NUM_CLASSES)
self.fc_final = nn.Linear(gcn_out_dim, n_class)
self.criterion = nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.parameters(), lr=lr, weight_decay=weight_decay)
def forward(self, h, adj):
out = self.gat1(h, adj)
out = self.gat2(out, adj)
att = self.attention(out.unsqueeze(0).float()) # att.shape = (1, ATTENTION_HEADS, seq_len)
node_feature_embedding = att @ out # output.shape = (1, ATTENTION_HEADS, GAT_OUTPUT_DIM)
node_feature_embedding_avg = torch.sum(node_feature_embedding,
1) / self.attention.n_heads # node_feature_embedding_avg.shape = (1, GAT_OUTPUT_DIM)
logits = torch.sigmoid(self.fc_final(node_feature_embedding_avg)) # output.shape = (1, NUM_CLASSES)
Y_hat = torch.topk(logits, 1, dim = 1)[1]
Y_prob = torch.softmax(logits, dim = 1)
return logits, Y_hat, Y_prob
#return out