-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglobal_Merged.py
96 lines (86 loc) · 4.4 KB
/
global_Merged.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import cv2
import numpy as np
import os
import time
from PIL import Image
def normalize_image(image):
min_val = np.min(image)
max_val = np.max(image)
if max_val != min_val:
normalized_image = (image - min_val) / (max_val - min_val) * 255.0 # Scale to 0-255
else:
normalized_image = image.copy()
return normalized_image.astype(np.uint8) # Ensuring the image is uint8 for feature detection
def get_all_channel_files(folder_path):
tif_files = [f for f in os.listdir(folder_path) if f.endswith('.tif')]
all_channel_files = {}
for file in tif_files:
section = file.split('ch')[0]
if section not in all_channel_files:
all_channel_files[section] = {}
channel = int(file.split('ch')[1][:2])
all_channel_files[section][channel] = file
return all_channel_files
def robust_feature_matching(des1, des2):
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1, des2) # Changed from knnMatch to match as it's suitable for BF with crossCheck
matches = sorted(matches, key=lambda x: x.distance)
return matches[:30] # Return top 30 matches for homography
def homography_registration(img1, img2, method=cv2.RANSAC, threshold=5.0):
akaze = cv2.AKAZE_create()
kp1, des1 = akaze.detectAndCompute(img1, None)
kp2, des2 = akaze.detectAndCompute(img2, None)
if des1 is None or des2 is None:
raise ValueError("No descriptors found. Check image quality or parameters.")
matches = robust_feature_matching(des1, des2)
if len(matches) >= 4: # Homography needs at least 4 matches
src_pts = np.float32([kp1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
H, mask = cv2.findHomography(src_pts, dst_pts, method, threshold)
return H
else:
raise ValueError("Not enough matches found for reliable registration.")
def register_images(img1_ch00, img2_ch00, additional_channels_imgs):
img1_ch00_normalized = normalize_image(img1_ch00)
img2_ch00_normalized = normalize_image(img2_ch00)
H = homography_registration(img2_ch00_normalized, img1_ch00_normalized)
height, width = img1_ch00.shape[:2]
registered_images = {'ch00': cv2.warpPerspective(img2_ch00, H, (width, height))}
for ch, img in additional_channels_imgs.items():
registered_images[ch] = cv2.warpPerspective(img, H, (width, height))
return registered_images, H
def main(input_folder, output_folder):
if not os.path.exists(input_folder):
print("Error: Input folder does not exist.")
return
if not os.path.exists(output_folder):
os.makedirs(output_folder, exist_ok=True)
all_channel_files = get_all_channel_files(input_folder)
if not all_channel_files:
print("Error: No images found in the input folder.")
return
sorted_sections = sorted(all_channel_files.keys())
base_section = sorted_sections[0]
base_channel = 0
img1_ch00_path = os.path.join(input_folder, all_channel_files[base_section][base_channel])
img1_ch00 = cv2.imread(img1_ch00_path, cv2.IMREAD_UNCHANGED)
transformation_file_path = os.path.join(output_folder, 'transformations.txt')
with open(transformation_file_path, 'w') as f:
f.write("Transformation Matrices:\n\n")
for section in sorted_sections[1:]:
img2_ch00_path = os.path.join(input_folder, all_channel_files[section][base_channel])
img2_ch00 = cv2.imread(img2_ch00_path, cv2.IMREAD_UNCHANGED)
additional_channels_imgs = {}
for ch, file in all_channel_files[section].items():
if ch != base_channel:
additional_channels_imgs[f'ch{ch:02d}'] = cv2.imread(os.path.join(input_folder, file), cv2.IMREAD_UNCHANGED)
registered_imgs, H = register_images(img1_ch00, img2_ch00, additional_channels_imgs)
f.write(f"Section: {section}\n{H}\n\n")
for ch, img in registered_imgs.items():
cv2.imwrite(os.path.join(output_folder, f'{section}-{ch}-registered.tif'), img)
if __name__ == '__main__':
start_time = time.time()
main('./input', './output')
end_time = time.time()
print(" -------------------------------- Time to run --------------------------------")
print(end_time - start_time)