forked from mavam/stat-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
probstat-english.dict
719 lines (688 loc) · 34.2 KB
/
probstat-english.dict
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
%
% Dictionary for the Probability and Statistics Cookbook.
%
% Language: English (default)
% Author: Matthias Vallentin
%
\ProvidesDictionary{probstat}{english}
%
% Preamble
%
\newtranslation{maintitle}{Probability and Statistics}
\newtranslation{subtitle}{Cookbook}
\newtranslation{disclaimer}{%
This cookbook integrates a variety of topics in probability theory and
statistics. It is based on literature \cite{Hoel72,Wasserman03,Shumway06} and
in-class material from courses of the statistics department at the University
of California in Berkeley but also influenced by other sources
\cite{Steger01,Steger02}. If you find errors or have suggestions for further
topics, I would appreciate if you send me an \href{mailto:\email}{email}. The
most recent version of this document is available at \web. To reproduce,
please contact me.}
%
% Global (sorted alphabetically)
%
\newtranslation{be the}{be the}
\newtranslation{and}{and}
\newtranslation{Continuous}{Continuous}
\newtranslation{continuous}{continuous}
\newtranslation{Definition}{Definition}
\newtranslation{Definitions}{Definitions}
\newtranslation{Discrete}{Discrete}
\newtranslation{discrete}{discrete}
\newtranslation{Estimate}{Estimate}
\newtranslation{Example}{Example}
\newtranslation{for some}{for some}
\newtranslation{If}{If}
\newtranslation{In particular}{In particular}
\newtranslation{is the}{is the}
\newtranslation{large}{large}
\newtranslation{Let}{Let}
\newtranslation{let}{let}
\newtranslation{of}{of}
\newtranslation{Properties}{Properties}
\newtranslation{properties}{properties}
\newtranslation{Sample mean}{Sample mean}
\newtranslation{Sample variance}{Sample variance}
\newtranslation{small}{small}
\newtranslation{Suppose}{Suppose}
\newtranslation{Then}{Then}
\newtranslation{when}{when}
\newtranslation{where}{where}
\newtranslation{with}{with}
\newtranslation{under}{under}
%
% Sections (sorted by occurrence; each paragraph covers one section)
%
\newtranslation{Distribution Overview}{Distribution Overview}
\newtranslation{Discrete Distributions}{Discrete Distributions}
\newtranslation{Notation}{Notation}
\newtranslation{Uniform}{Uniform}
\newtranslation{Bernoulli}{Bernoulli}
\newtranslation{Binomial}{Binomial}
\newtranslation{Multinomial}{Multinomial}
\newtranslation{Hypergeometric}{Hypergeometric}
\newtranslation{Negative Binomial}{Negative Binomial}
\newtranslation{Geometric}{Geometric}
\newtranslation{Poisson}{Poisson}
\newtranslation{Footnote about notation}{%
We use the notation $\gamma(s,x)$ and $\Gamma(x)$ to refer to the Gamma
functions (see \S\ref{sec:math:gamma}), and use $\text{B}(x,y)$ and $I_x$ to
refer to the Beta functions (see \S\ref{sec:math:beta}).}
\newtranslation{Continuous Distributions}{Continuous Distributions}
\newtranslation{Normal}{Normal}
\newtranslation{Log-Normal}{Log-Normal}
\newtranslation{Multivariate Normal}{Multivariate Normal}
\newtranslation{Student's t}{Student's $t$}
\newtranslation{Chi-square}{Chi-square}
\newtranslation{Exponential}{Exponential}
\newtranslation{Inverse Gamma}{Inverse Gamma}
\newtranslation{Probability Theory}{Probability Theory}
\newtranslation{Sample space}{Sample space}
\newtranslation{Outcome}{Outcome (point or element)}
\newtranslation{Event}{Event}
\newtranslation{Sigma-algebra}{$\sigma$-algebra}
\newtranslation{Probability distribution}{Probability distribution}
\newtranslation{Probability space}{Probability space}
\newtranslation{Continuity of Probabilities}{Continuity of Probabilities}
\newtranslation{Independence}{Independence}
\newtranslation{Conditional Probability}{Conditional Probability}
\newtranslation{Law of Total Probability}{Law of Total Probability}
\newtranslation{Bayes' Theorem}{Bayes' Theorem}
\newtranslation{Inclusion-Exclusion Principle}{Inclusion-Exclusion Principle}
\newtranslation{Random Variables}{Random Variables}
\newtranslation{Random Variable}{Random Variable (RV)}
\newtranslation{Probability Mass Function}{Probability Mass Function (PMF)}
\newtranslation{Probability Density Function}{
Probability Density Function (PDF)}
\newtranslation{Cumulative Distribution Function}{
Cumulative Distribution Function (CDF)}
\newtranslation{Nondecreasing}{Nondecreasing}
\newtranslation{Normalized}{Normalized}
\newtranslation{Right-Continuous}{Right-Continuous}
\newtranslation{Transformations}{Transformations}
\newtranslation{Transformation function}{Transformation function}
\newtranslation{Special case if transform strictly monotone}{%
Special case if $\transform$ strictly monotone}
\newtranslation{The Rule of the Lazy Statistician}{%
The Rule of the Lazy Statistician}
\newtranslation{Convolution}{Convolution}
\newtranslation{Expectation}{Expectation}
\newtranslation{inequality}{inequality}
\newtranslation{Conditional expectation}{Conditional expectation}
\newtranslation{Variance}{Variance}
\newtranslation{Standard deviation}{Standard deviation}
\newtranslation{Covariance}{Covariance}
\newtranslation{Correlation}{Correlation}
\newtranslation{Conditional variance}{Conditional variance}
\newtranslation{Inequalities}{Inequalities}
\newtranslation{convex}{convex}
\newtranslation{Distribution Relationships}{Distribution Relationships}
\newtranslation{far from 0 and 1}{far from 0 and 1}
\newtranslation{Memoryless property}{Memoryless property}
\newtranslation{Upper quantile of}{Upper quantile of}
\newtranslation{Probability and Moment Generating Functions}{%
Probability and Moment Generating Functions}
\newtranslation{Multivariate Distributions}{Multivariate Distributions}
\newtranslation{Standard Bivariate Normal}{Standard Bivariate Normal}
\newtranslation{Joint density}{Joint density}
\newtranslation{Conditionals}{Conditionals}
\newtranslation{Bivariate Normal}{Bivariate Normal}
\newtranslation{Conditional mean and variance}{Conditional mean and variance}
\newtranslation{Multivariate Normal}{Multivariate Normal}
\newtranslation{Covariance Matrix}{Covariance matrix}
\newtranslation{Precision Matrix}{Precision matrix}
\newtranslation{Convergence}{Convergence}
\newtranslation{Convergence Introduction}{%
Let $\{X_1,X_2,\ldots\}$ be a sequence of \rv's and let $X$ be another \rv.
Let $F_n$ denote the \cdf of $X_n$ and let $F$ denote the \cdf of $X$.}
\newtranslation{Types of Convergence}{Types of convergence}
\newtranslation{In distribution}{In distribution (weakly, in law)}
\newtranslation{In probability}{In probability}
\newtranslation{Almost surely}{Almost surely (strongly)}
\newtranslation{In quadratic mean}{In quadratic mean ($L_2$)}
\newtranslation{Relationships}{Relationships}
\newtranslation{Slutzky's Theorem}{\textsc{Slutzky's Theorem}}
\newtranslation{In general}{In general}
\newtranslation{Law of Large Numbers}{Law of Large Numbers (LLN)}
\newtranslation{WLLN}{Weak (WLLN)}
\newtranslation{SLLN}{Strong (SLLN)}
\newtranslation{LLN Introduction}{%
Let $\{X_1,\ldots,X_n\}$ be a sequence of \iid \rv's, $\E{X_1}=\mu$.}
\newtranslation{Central Limit Theorem}{Central Limit Theorem (CLT)}
\newtranslation{CLT Introduction}{%
Let $\{X_1,\ldots,X_n\}$ be a sequence of \iid \rv's, $\E{X_1}=\mu$, and
$\V{X_1} = \sigma^2$.}
\newtranslation{CLT notations}{CLT notations}
\newtranslation{Continuity correction}{Continuity correction}
\newtranslation{Delta method}{Delta method}
\newtranslation{Statistical Inference}{Statistical Inference}
\newtranslation{Statistical Inference Introduction}{%
Let $X_1,\cdots,X_n \distiid F$ if not otherwise noted.}
\newtranslation{Point Estimation}{Point Estimation}
\newtranslation{Point estimator}{Point estimator $\that_n$ of $\theta$ is a \rv}
\newtranslation{Consistency}{Consistency}
\newtranslation{Sampling distribution}{Sampling distribution}
\newtranslation{Standard error}{Standard error}
\newtranslation{Mean squared error}{Mean squared error}
\newtranslation{is consistent}{is consistent}
\newtranslation{Asymptotic normality}{Asymptotic normality}
\newtranslation{Slutzky Note}{%
\translate{Slutzky's Theorem} often lets us replace $\se(\that_n)$ by some
(weakly) consistent estimator $\shat_n$.}
\newtranslation{Normal-based Confidence Interval}{%
Normal-based Confidence Interval}
\newtranslation{Empirical distribution}{Empirical distribution}
\newtranslation{Empirical Distribution Function}{%
Empirical Distribution Function (ECDF)}
\newtranslation{for any fixed x}{for any fixed $x$}
\newtranslation{Dvoretzky-Kiefer-Wolfowitz inequality}{%
\textsc{Dvoretzky-Kiefer-Wolfowitz} (DKW) inequality}
\newtranslation{Nonparametric confidence band}{%
Nonparametric $1-\alpha$ confidence band for $F$}
\newtranslation{Statistical Functionals}{Statistical Functionals}
\newtranslation{Statistical functional}{Statistical functional}
\newtranslation{Plug-in estimator of theta}{%
Plug-in estimator of $\theta = (F)$}
\newtranslation{Linear functional}{Linear functional}
\newtranslation{Plug-in estimator for linear functional}{%
Plug-in estimator for linear functional}
\newtranslation{Often}{Often}
\newtranslation{quantile}{quantile}
\newtranslation{Parametric Inference}{Parametric Inference}
\newtranslation{Parametric Inference Introduction}{%
Let $\mathfrak{F} = \bigl\{ f(x;\theta) : \theta\in\Theta \bigr\}$ be a
parametric model with parameter space $\Theta \subset \R^k$ and parameter
$\theta = (\theta_1,\dots,\theta_k)$.}
\newtranslation{Method of moments}{Method of Moments}
\newtranslation{jth moment}{$j^{\mathrm{th}}$ moment}
\newtranslation{jth sample moment}{$j^{\mathrm{th}}$ sample moment}
\newtranslation{Method of Moments estimator}{Method of moments estimator (MoM)}
\newtranslation{Properties of the MoM estimator}{%
Properties of the MoM estimator}
\newtranslation{exists with probability tending to 1}{%
exists with probability tending to 1}
\newtranslation{Maximum likelihood}{Maximum likelihood}
\newtranslation{Likelihood}{Likelihood}
\newtranslation{Log-likelihood}{Log-likelihood}
\newtranslation{Maximum likelihood estimator}{%
Maximum likelihood estimator (\mle)}
\newtranslation{Score function}{Score function}
\newtranslation{Fisher information}{Fisher information}
\newtranslation{exponential family}{exponential family}
\newtranslation{Observed Fisher information}{Observed Fisher information}
\newtranslation{Properties of the MLE}{Properties of the \mle}
\newtranslation{Equivariance}{Equivariance}
\newtranslation{Asymptotic optimality}{%
Asymptotic optimality (or efficiency), i.e., smallest variance for large
samples. If $\ttil_n$ is any other estimator, the asymptotic relative
efficiency is}
\newtranslation{Approximately the Bayes estimator}{%
Approximately the Bayes estimator}
\newtranslation{is differentiable}{is differentiable}
\newtranslation{Multiparameter Models}{Multiparameter Models}
\newtranslation{Fisher information matrix}{Fisher information matrix}
\newtranslation{Under appropriate regularity conditions}{%
Under appropriate regularity conditions}
\newtranslation{Note on component convergence}{%
Further, if $\that_j$ is the $j^{\mathrm{th}}$ component of $\theta$,
then \[\frac{(\that_j-\theta_j)}{\sehat_j} \dconv \norm[0,1]\]
where $\sehat_j^2 = J_n(j,j)$ and $\cov{\that_j,\that_k} = J_n(j,k)$}
\newtranslation{Multiparameter delta method}{Multiparameter delta method}
\newtranslation{let the gradient of transform be}{%
let the gradient of \transform be}
\newtranslation{Parametric Bootstrap}{Parametric Bootstrap}
\newtranslation{Parametric Bootstrap Note}{%
Sample from $f(x;\that_n)$ instead of from $\Fnhat$,
where $\that_n$ could be the \mle or method of moments estimator.}
\newtranslation{Hypothesis Testing}{Hypothesis Testing}
\newtranslation{versus}{versus}
\newtranslation{Null hypothesis}{Null hypothesis}
\newtranslation{Alternative hypothesis}{Alternative hypothesis}
\newtranslation{Simple hypothesis}{Simple hypothesis}
\newtranslation{Composite hypothesis}{Composite hypothesis}
\newtranslation{Two-sided test}{Two-sided test}
\newtranslation{One-sided test}{One-sided test}
\newtranslation{Critical value}{Critical value}
\newtranslation{Test statistic}{Test statistic}
\newtranslation{Rejection region}{Rejection region}
\newtranslation{Power function}{Power function}
\newtranslation{Power of a test}{Power of a test}
\newtranslation{Test size}{Test size}
\newtranslation{Retain}{Retain}
\newtranslation{Reject}{Reject}
\newtranslation{true}{true}
\newtranslation{Type I error}{Type I error}
\newtranslation{Type II error}{Type II error}
\newtranslation{power}{power}
\newtranslation{p-value}{p-value}
\newtranslation{evidence}{evidence}
\newtranslation{very strong evidence against}{very strong evidence against}
\newtranslation{strong evidence against}{strong evidence against}
\newtranslation{weak evidence against}{weak evidence against}
\newtranslation{little or no evidence against}{little or no evidence against}
\newtranslation{Wald test}{Wald test}
\newtranslation{Likelihood ratio test}{Likelihood ratio test (LRT)}
\newtranslation{Multinomial LRT}{Multinomial LRT}
\newtranslation{The approximate size alpha LRT rejects H0}{%
The approximate size $\alpha$ LRT rejects $H_0$ when
$\lambda(X) \ge \chi_{k-1,\alpha}^2$}
\newtranslation{Pearson}{Pearson}
\newtranslation{Pearson Chi-square}{Pearson $\chi^2$}
\newtranslation{Pearson Chi-square test}{\translate{Pearson Chi-square} test}
\newtranslation{Faster convergence than LRT, hence preferable for small n}{%
Faster $\dconv X_{k-1}^2$ than LRT, hence preferable for small $n$}
\newtranslation{Independence testing}{Independence testing}
\newtranslation{rows}{rows}
\newtranslation{columns}{columns}
\newtranslation{multinomial sample of size}{multinomial sample of size}
\newtranslation{unconstrained}{unconstrained}
\newtranslation{LRT}{LRT}
\newtranslation{Bayesian Inference}{Bayesian Inference}
\newtranslation{Prior density}{Prior density}
\newtranslation{joint density of the data}{joint density of the data}
\newtranslation{Posterior density}{Posterior density}
\newtranslation{Normalizing constant}{Normalizing constant}
\newtranslation{Kernel: part of a density that depends on theta}{%
Kernel: part of a density that depends on $\theta$}
\newtranslation{Posterior mean}{Posterior mean}
\newtranslation{Credible Intervals}{Credible Intervals}
\newtranslation{Posterior interval}{Posterior interval}
\newtranslation{Equal-tail credible interval}{Equal-tail credible interval}
\newtranslation{Highest posterior density (HPD) region}{%
Highest posterior density (HPD) region}
\newtranslation{is unimodal}{is unimodal}
\newtranslation{is an interval}{is an interval}
\newtranslation{Function of parameters}{Function of parameters}
\newtranslation{Posterior CDF for tau}{Posterior CDF for $\tau$}
\newtranslation{Bayesian delta method}{Bayesian delta method}
\newtranslation{Priors}{Priors}
\newtranslation{Choice}{Choice}
\newtranslation{Subjective Bayesianism}{%
Subjective Bayesianism: prior should incorporate as much detail as
possible the research's a priori knowledge --- via \emph{prior elicitation}}
\newtranslation{Objective Bayesianism}{%
Objective Bayesianism: prior should incorporate as little detail as possible
(\emph{non-informative} prior)}
\newtranslation{Robust Bayesianism}{%
Robust Bayesianism: consider various priors and determine \emph{sensitivity}
of our inferences to changes in the prior}
\newtranslation{Types}{Types}
\newtranslation{Flat}{Flat}
\newtranslation{Proper}{Proper}
\newtranslation{Improper}{Improper}
\newtranslation{transformation-invariant}{transformation-invariant}
\newtranslation{Jeffrey's Prior}{\textsc{Jeffrey}'s prior}
\newtranslation{Conjugate}{Conjugate}
\newtranslation{belong to the same parametric family}{%
belong to the same parametric family}
\newtranslation{Conjugate Priors}{Conjugate Priors}
\newtranslation{Discrete likelihood}{Discrete likelihood}
\newtranslation{Posterior hyperparameters}{Posterior hyperparameters}
\newtranslation{Conjugate prior}{Conjugate prior}
\newtranslation{Continuous likelihood}{%
Continuous likelihood (subscript $c$ denotes constant)}
\newtranslation{Scaled Inverse Chi-square}{Scaled Inverse Chi-square}
\newtranslation{Normal-scaled Inverse Gamma}{Normal-scaled Inverse Gamma}
\newtranslation{Inverse-Wishart}{Inverse-Wishart}
\newtranslation{Bayesian Testing}{Bayesian Testing}
\newtranslation{Prior probability}{Prior probability}
\newtranslation{Posterior probability}{Posterior probability}
\newtranslation{Let H_0...H_K-1 be k hypotheses}{%
Let $H_0,\ldots,H_{K-1}$ be $K$ hypotheses}
\newtranslation{Marginal likelihood}{Marginal likelihood}
\newtranslation{Posterior odds}{Posterior odds (of $H_i$ relative to $H_j$)}
\newtranslation{Bayes factor}{Bayes factor}
\newtranslation{Weak}{Weak}
\newtranslation{Moderate}{Moderate}
\newtranslation{Strong}{Strong}
\newtranslation{Decisive}{Decisive}
\newtranslation{Exponential Family}{Exponential Family}
\newtranslation{Scalar parameter}{Scalar parameter}
\newtranslation{Vector parameter}{Vector parameter}
\newtranslation{Natural form}{Natural form}
\newtranslation{Sampling Methods}{Sampling Methods}
\newtranslation{The Bootstrap}{The Bootstrap}
\newtranslation{be a statistic}{be a statistic}
\newtranslation{Approximate}{Approximate}
\newtranslation{using simulation}{using simulation}
\newtranslation{Repeat the following B times}{%
Repeat the following $B$ times to get $T_{n,1}^*,\dots,T_{n,B}^*$,
an \iid sample from the sampling distribution implied by $\Fnhat$}
\newtranslation{Sample uniformly}{Sample uniformly}
\newtranslation{Bootstrap Confidence Intervals}{Bootstrap Confidence Intervals}
\newtranslation{Normal-based interval}{Normal-based interval}
\newtranslation{Pivotal interval}{Pivotal interval}
\newtranslation{Location parameter}{Location parameter}
\newtranslation{Pivot}{Pivot}
\newtranslation{using bootstrap}{using bootstrap}
\newtranslation{beta sample quantile of}{$\beta$ sample quantile of}
\newtranslation{Approximate 1-alpha CI}{%
Approximate $1 - \alpha$ confidence interval}
\newtranslation{Percentile interval}{Percentile interval}
\newtranslation{Rejection Sampling}{Rejection Sampling}
\newtranslation{Setup}{Setup}
\newtranslation{We can easily sample from g}{%
We can easily sample from $g(\theta)$}
\newtranslation{We want to sample from h, but it is difficult}{%
We want to sample from $h(\theta)$, but it is difficult}
\newtranslation{We know h up to a proportional constant}{%
We know $h(\theta)$ up to a proportional constant}
\newtranslation{Envelope condition: we can find M > 0 such that}{%
Envelope condition: we can find $M > 0$ such that}
\newtranslation{Algorithm}{Algorithm}
\newtranslation{Draw}{Draw}
\newtranslation{Generate}{Generate}
\newtranslation{Accept}{Accept}
\newtranslation{We can easily sample from the prior}{%
We can easily sample from the prior}
\newtranslation{Repeat until B values of theta-cand have been accepted}{%
Repeat until $B$ values of $\theta^{cand}$ have been accepted}
\newtranslation{Target is the posterior}{Target is the posterior}
\newtranslation{Envelope condition}{Envelope condition}
\newtranslation{Importance Sampling}{Importance Sampling}
\newtranslation{Importance Sampling Introduction}{%
Sample from an importance function $g$ rather than target density $h$.\\
Algorithm to obtain an approximation to $\E{q(\theta) \giv x^n}$:}
\newtranslation{Sample from the prior}{Sample from the prior}
\newtranslation{Decision Theory}{Decision Theory}
\newtranslation{Unknown quantity affecting our decision}{%
Unknown quantity affecting our decision}
\newtranslation{Decision rule: synonymous for an estimator theta hat}{%
Decision rule: synonymous for an estimator $\that$}
\newtranslation{Action a in A}{%
Action $a \in \mathcal{A}$: possible value of the decision rule. In the
estimation context, the action is just an estimate of $\theta$, $\that(x)$.}
\newtranslation{Loss function L}{%
Loss function $L$: consequences of taking action $a$ when true state is
$\theta$ or discrepancy between $\theta$ and $\that$}
\newtranslation{Loss functions}{Loss functions}
\newtranslation{Squared error loss}{Squared error loss}
\newtranslation{Linear loss}{Linear loss}
\newtranslation{Absolute error loss}{Absolute error loss}
\newtranslation{linear loss with}{linear loss with}
\newtranslation{loss}{loss}
\newtranslation{Zero-one loss}{Zero-one loss}
\newtranslation{Risk}{Risk}
\newtranslation{Posterior risk}{Posterior risk}
\newtranslation{(Frequentist) risk}{(Frequentist) risk}
\newtranslation{Bayes risk}{Bayes risk}
\newtranslation{Admissibility}{Admissibility}
\newtranslation{dominates}{dominates}
\newtranslation{is inadmissible if there is at least one other estimator}{%
is inadmissible if there is at least one other estimator $\that'$ that
dominates it. Otherwise it is called admissible.}
\newtranslation{Bayes Rule}{Bayes Rule}
\newtranslation{Bayes rule}{Bayes rule}
\newtranslation{or Bayes estimator}{or Bayes estimator}
\newtranslation{Theorems}{Theorems}
\newtranslation{posterior mean}{posterior mean}
\newtranslation{posterior median}{posterior median}
\newtranslation{posterior mode}{posterior mode}
\newtranslation{Minimax Rules}{Minimax Rules}
\newtranslation{Maximum risk}{Maximum risk}
\newtranslation{Minimax rule}{Minimax rule}
\newtranslation{Least favorable prior}{Least favorable prior}
\newtranslation{Linear Regression}{Linear Regression}
\newtranslation{Response variable}{Response variable}
\newtranslation{Covariate}{Covariate}
\newtranslation{aka predictor variable or feature}{%
aka predictor variable or feature}
\newtranslation{Simple Linear Regression}{Simple Linear Regression}
\newtranslation{Model}{Model}
\newtranslation{Fitted line}{Fitted line}
\newtranslation{Predicted (fitted) values}{Predicted (fitted) values}
\newtranslation{Residuals}{Residuals}
\newtranslation{Residual sums of squares}{Residual sums of squares}
\newtranslation{Least square estimates}{Least square estimates}
\newtranslation{unbiased estimate}{unbiased estimate}
\newtranslation{Further properties}{Further properties}
\newtranslation{Approximate 1-alpha CI for beta0 and beta1}{%
Approximate $1-\alpha$ confidence intervals for $\beta_0$ and $\beta_1$}
\newtranslation{reject}{reject}
\newtranslation{Likelihood}{Likelihood}
\newtranslation{Under the assumption of Normality, the least squares estimator
is also the MLE}{%
Under the assumption of Normality, the least squares estimator is also the
\mle}
\newtranslation{Prediction}{Prediction}
\newtranslation{Observe X = x* of the covariate and want to predict their
outcome Y*}{%
Observe $X = x_*$ of the covariate and want to predict their outcome $Y_*$}
\newtranslation{Prediction interval}{Prediction interval}
\newtranslation{Multiple Regression}{Multiple Regression}
\newtranslation{If the k by k matrix X'X is invertible}{%
If the $(k \times k)$ matrix $X^TX$ is invertible}
\newtranslation{Estimate regression function}{Estimate regression function}
\newtranslation{Unbiased estimate for sigma-squared}{%
Unbiased estimate for $\sigma^2$}
\newtranslation{Confidence interval}{Confidence interval}
\newtranslation{Model Selection}{Model Selection}
\newtranslation{Model Selection Introduction}{
Consider predicting a new observation $Y^*$ for covariates $X^*$ and let $S
\subset J$ denote a subset of the covariates in the model, where $|S| = k$
and $|J| = n$}
\newtranslation{Issues}{Issues}
\newtranslation{Underfitting: too few covariates yields high bias}{%
Underfitting: too few covariates yields high bias}
\newtranslation{Overfitting: too many covariates yields high variance}{%
Overfitting: too many covariates yields high variance}
\newtranslation{Procedure}{Procedure}
\newtranslation{Assign a score to each model}{Assign a score to each model}
\newtranslation{Search through all models to find the one with the highest
score}{Search through all models to find the one with the highest score}
\newtranslation{Hypothesis testing}{Hypothesis testing}
\newtranslation{Mean squared prediction error (MSPE)}{%
Mean squared prediction error (\mspe)}
\newtranslation{Prediction risk}{Prediction risk}
\newtranslation{Training error}{Training error}
\newtranslation{The training error is a downward-biased estimate of the
prediction risk}{%
The training error is a downward-biased estimate of the prediction risk}
\newtranslation{Adjusted R2}{Adjusted $R^2$}
\newtranslation{Mallow's Cp statistic}{\textsc{Mallow's} $C_p$ statistic}
\newtranslation{lack of fit}{lack of fit}
\newtranslation{complexity penalty}{complexity penalty}
\newtranslation{Akaike Information Criterion (AIC)}{%
\textsc{Akaike} Information Criterion (AIC)}
\newtranslation{Bayesian Information Criterion (BIC)}{%
Bayesian Information Criterion (BIC)}
\newtranslation{Validation and training}{Validation and training}
\newtranslation{validation data}{validation data}
\newtranslation{often}{often}
\newtranslation{Leave-one-out cross-validation}{Leave-one-out cross-validation}
\newtranslation{Non-parametric Function Estimation}{%
Non-parametric Function Estimation}
\newtranslation{Density Estimation}{Density Estimation}
\newtranslation{Integrated square error (ISE)}{Integrated square error (\ise)}
\newtranslation{Frequentist risk}{Frequentist risk}
\newtranslation{Histograms}{Histograms}
\newtranslation{Number of bins}{Number of bins}
\newtranslation{Binwidth}{Binwidth}
\newtranslation{Bin}{Bin}
\newtranslation{has}{has}
\newtranslation{observations}{observations}
\newtranslation{Define}{Define}
\newtranslation{Histogram estimator}{Histogram estimator}
\newtranslation{Cross-validation estimate of}{Cross-validation estimate of}
\newtranslation{Kernel Density Estimator (KDE)}{Kernel Density Estimator (KDE)}
\newtranslation{Kernel}{Kernel}
\newtranslation{KDE}{KDE}
\newtranslation{Epanechnikov Kernel}{\textsc{Epanechnikov} Kernel}
\newtranslation{otherwise}{otherwise}
\newtranslation{Non-parametric Regression}{Non-parametric Regression}
\newtranslation{Consider pairs of points (x1,Y1),...,(xn,Yn) related by}{%
Consider pairs of points $(x_1,Y_1),\dots,(x_n,Y_n)$ related by}
\newtranslation{k-nearest Neighbor Estimator}{$k$-nearest Neighbor Estimator}
\newtranslation{values of}{values of}
\newtranslation{closest to}{closest to}
\newtranslation{Nadaraya-Watson Kernel Estimator}{%
\textsc{Nadaraya-Watson} Kernel Estimator}
\newtranslation{Smoothing Using Orthogonal Functions}{%
Smoothing Using Orthogonal Functions}
\newtranslation{Approximation}{Approximation}
\newtranslation{Multivariate regression}{Multivariate regression}
\newtranslation{Least squares estimator}{Least squares estimator}
\newtranslation{for equally spaced observations only}{%
for equally spaced observations only}
\newtranslation{Stochastic Processes}{Stochastic Processes}
\newtranslation{Stochastic Process}{Stochastic Process}
\newtranslation{Notations}{Notations}
\newtranslation{State space}{State space}
\newtranslation{Index set}{Index set}
\newtranslation{Markov Chains}{Markov Chains}
\newtranslation{Markov chain}{Markov chain}
\newtranslation{Transition probabilities}{Transition probabilities}
\newtranslation{n-step}{n-step}
\newtranslation{Transition matrix}{Transition matrix}
\newtranslation{element is}{element is}
\newtranslation{Marginal probability}{Marginal probability}
\newtranslation{initial distribution}{initial distribution}
\newtranslation{Poisson Processes}{Poisson Processes}
\newtranslation{Poisson process}{Poisson process}
\newtranslation{number of events up to and including time}{%
number of events up to and including time}
\newtranslation{Independent increments}{Independent increments}
\newtranslation{Intensity function}{Intensity function}
\newtranslation{Homogeneous Poisson process}{Homogeneous Poisson process}
\newtranslation{Waiting times}{Waiting times}
\newtranslation{time at which Xt occurs}{time at which $X_t$ occurs}
\newtranslation{Interarrival times}{Interarrival times}
\newtranslation{Time Series}{Time Series}
\newtranslation{Mean function}{Mean function}
\newtranslation{Autocovariance function}{Autocovariance function}
\newtranslation{Autocorrelation function (ACF)}{Autocorrelation function (ACF)}
\newtranslation{Cross-covariance function (CCV)}{%
Cross-covariance function (CCV)}
\newtranslation{Cross-correlation function (CCF)}{%
Cross-correlation function (CCF)}
\newtranslation{Backshift operator}{Backshift operator}
\newtranslation{Difference operator}{Difference operator}
\newtranslation{White noise}{White noise}
\newtranslation{Gaussian}{Gaussian}
\newtranslation{Random walk}{Random walk}
\newtranslation{Drift}{Drift}
\newtranslation{Symmetric moving average}{Symmetric moving average}
\newtranslation{Stationary Time Series}{Stationary Time Series}
\newtranslation{Strictly stationary}{Strictly stationary}
\newtranslation{Weakly stationary}{Weakly stationary}
\newtranslation{Autocovariance function}{Autocovariance function}
\newtranslation{Autocorrelation function (ACF)}{Autocorrelation function (ACF)}
\newtranslation{Jointly stationary time series}{Jointly stationary time series}
\newtranslation{Linear process}{Linear process}
\newtranslation{Estimation of Correlation}{Estimation of Correlation}
\newtranslation{Sample autocovariance function}{Sample autocovariance function}
\newtranslation{Estimation of Correlation}{Estimation of Correlation}
\newtranslation{Sample autocovariance function}{Sample autocovariance function}
\newtranslation{Sample autocorrelation function}{%
Sample autocorrelation function}
\newtranslation{Sample cross-variance function}{Sample cross-variance function}
\newtranslation{Sample cross-correlation function}{%
Sample cross-correlation function}
\newtranslation{is white noise}{is white noise}
\newtranslation{Non-Stationary Time Series}{Non-Stationary Time Series}
\newtranslation{Classical decomposition model}{Classical decomposition model}
\newtranslation{trend}{trend}
\newtranslation{seasonal component}{seasonal component}
\newtranslation{random noise term}{random noise term}
\newtranslation{Detrending}{Detrending}
\newtranslation{Least squares}{Least squares}
\newtranslation{Choose trend model}{Choose trend model}
\newtranslation{Minimize RSS to obtain trend estimate}{%
Minimize \rss to obtain trend estimate}
\newtranslation{Residuals}{Residuals}
\newtranslation{noise}{noise}
\newtranslation{Moving average}{Moving average}
\newtranslation{The low-pass filter vt is a symmetric moving average}{%
The \emph{low-pass} filter $v_t$ is a symmetric moving average $m_t$ with
$a_j = \frac{1}{2k+1}$}
\newtranslation{a linear trend function mut passes without distortion}{%
a linear trend function $\mu_t = \beta_0 + \beta_1t$ passes without
distortion}
\newtranslation{Differencing}{Differencing}
\newtranslation{ARIMA models}{ARIMA models}
\newtranslation{Autoregressive polynomial}{Autoregressive polynomial}
\newtranslation{Autoregressive operator}{Autoregressive operator}
\newtranslation{Autoregressive model order p}{Autoregressive model order $p$}
\newtranslation{Moving average polynomial}{Moving average polynomial}
\newtranslation{Moving average operator}{Moving average operator}
\newtranslation{moving average model order}{moving average model order}
\newtranslation{Partial autocorrelation function (PACF)}{%
Partial autocorrelation function (PACF)}
\newtranslation{regression of xi on}{regression of $x_i$ on}
\newtranslation{Exponentially Weighted Moving Average (EWMA)}{%
Exponentially Weighted Moving Average (EWMA)}
\newtranslation{Seasonal ARIMA}{Seasonal ARIMA}
\newtranslation{Denoted by}{Denoted by}
\newtranslation{Causality and Invertibility}{Causality and Invertibility}
\newtranslation{is causal (future-independent)}{is causal (future-independent)}
\newtranslation{such that}{such that}
\newtranslation{is invertible}{is invertible}
\newtranslation{causal}{causal}
\newtranslation{roots of phi(z) lie outside the unit circle}{
roots of $\phi(z)$ lie outside the unit circle}
\newtranslation{invertible}{invertible}
\newtranslation{roots of theta(z) lie outside the unit circle}{%
roots of $\theta(z)$ lie outside the unit circle}
\newtranslation{Behavior of the ACF and PACF for causal and invertible ARMA
models}{%
Behavior of the ACF and PACF for causal and invertible ARMA models}
\newtranslation{tails off}{tails off}
\newtranslation{cuts off after lag}{cuts off after lag}
\newtranslation{Spectral Analysis}{Spectral Analysis}
\newtranslation{Periodic process}{Periodic process}
\newtranslation{Frequency index omega (cycles per unit time)}{%
Frequency index $\omega$ (cycles per unit time)}
\newtranslation{period}{period}
\newtranslation{Amplitude}{Amplitude}
\newtranslation{Phase}{Phase}
\newtranslation{often normally distributed RV's}{%
often normally distributed \rv's}
\newtranslation{Periodic mixture}{Periodic mixture}
\newtranslation{are independent zero-mean RV's with variances}{%
are independent zero-mean \rv's with variances}
\newtranslation{Spectral representation of a periodic process}{%
Spectral representation of a periodic process}
\newtranslation{Spectral distribution function}{Spectral distribution function}
\newtranslation{Spectral density}{Spectral density}
\newtranslation{Needs}{Needs}
\newtranslation{Discrete Fourier Transform (DFT)}{%
Discrete Fourier Transform (DFT)}
\newtranslation{Fourier/Fundamental frequencies}{%
Fourier/Fundamental frequencies}
\newtranslation{Inverse DFT}{Inverse DFT}
\newtranslation{Periodogram}{Periodogram}
\newtranslation{Scaled Periodogram}{Scaled Periodogram}
\newtranslation{Gamma Function}{Gamma Function}
\newtranslation{Ordinary}{Ordinary}
\newtranslation{Upper incomplete}{Upper incomplete}
\newtranslation{Lower incomplete}{Lower incomplete}
\newtranslation{Beta Function}{Beta Function}
\newtranslation{Incomplete}{Incomplete}
\newtranslation{Regularized incomplete}{Regularized incomplete}
\newtranslation{Series}{Series}
\newtranslation{Finite}{Finite}
\newtranslation{Binomial}{Binomial}
\newtranslation{Vandermonde's Identity}{\textsc{Vandermonde}'s Identity}
\newtranslation{Binomial Theorem}{Binomial Theorem}
\newtranslation{Infinite}{Infinite}
\newtranslation{Combinatorics}{Combinatorics}
\newtranslation{Sampling}{Sampling}
\newtranslation{k out of n}{$k$ out of $n$}
\newtranslation{w/o replacement}{w/o replacement}
\newtranslation{w/ replacement}{w/ replacement}
\newtranslation{ordered}{ordered}
\newtranslation{unordered}{unordered}
\newtranslation{Stirling numbers, 2nd kind}{Stirling numbers, $2^{nd}$ kind}
\newtranslation{Partitions}{Partitions}
\newtranslation{Balls and Urns}{Balls and Urns}
\newtranslation{distinguishable}{distinguishable}
\newtranslation{indistinguishable}{indistinguishable}
\newtranslation{arbitrary}{arbitrary}
\newtranslation{injective}{injective}
\newtranslation{surjective}{surjective}
\newtranslation{bijective}{bijective}
\newtranslation{Univariate distribution relationships,
courtesy Leemis and McQueston}{%
Univariate distribution relationships, courtesy Leemis and McQueston}
% vim: ft=tex