diff --git a/.gitignore b/.gitignore index b494190c82..6502054978 100644 --- a/.gitignore +++ b/.gitignore @@ -26,6 +26,9 @@ wheels/ *.egg MANIFEST +# tmp folder +tmp/ + # PyInstaller # Usually these files are written by a python script from a template # before PyInstaller builds the exe, so as to inject date/other infos into it. diff --git a/batch_utils/run_breakfast.py b/batch_utils/run_breakfast.py new file mode 100755 index 0000000000..5028dd9b48 --- /dev/null +++ b/batch_utils/run_breakfast.py @@ -0,0 +1,41 @@ +from mmcv import Config, DictAction +from mmaction.apis import inference_recognizer, init_recognizer +import os.path as osp +import os +import time +from glob import glob + + +if __name__ == '__main__': + # ----settings----- + fp_config = 'mmaction2/configs/recognition/arr_tsm2022/tsm_r50_1x1x8_50e_breakfast_rgb.py' + fp_config_out = 'mmaction2/tmp/config.py' + cfg = Config.fromfile(fp_config) + cfg_options = {'work_dir': dir_workdir_next, + 'data.train.ann_file': train_data_next_mixed, + 'data.val.ann_file': val_data, + 'data.test.ann_file': test_data, + 'data.train.data_prefix': dir_videos_root, + 'data.val.data_prefix': dir_videos_root, + 'data.test.data_prefix': dir_videos_root, + 'load_from': fp_checkpoint_current, + 'data_root': dir_videos_root, + 'data_root_val': dir_videos_root, + 'ann_file_train': train_data_next_mixed, + 'ann_file_val': val_data, + 'ann_file_test': test_data, } + cfg.merge_from_dict(cfg_options) + cfg.dump(fp_config_next) + + train_command = mmaction_root + "/tools/dist_train_onlyheader.sh " + \ + fp_config_next + " 1 --validate --seed 0 --deterministic --gpu-ids 0" + import subprocess + print(train_command) + #subprocess.run([train_command], shell=True) +# + #test_command = mmaction_root + "/tools/test_several.py " + fp_config_next + " " + osp.join( + # dir_workdir_next, + # 'epoch_50.pth') + " --eval top_k_accuracy mean_class_accuracy --out " + osp.join( + # dir_workdir_next, + # 'test_result.json') + #print(test_command) diff --git a/configs/recognition/arr_tsm2022/tsm_r50_1x1x8_50e_breakfast_rgb.py b/configs/recognition/arr_tsm2022/tsm_r50_1x1x8_50e_breakfast_rgb.py index aff8cff888..3f076c58c7 100644 --- a/configs/recognition/arr_tsm2022/tsm_r50_1x1x8_50e_breakfast_rgb.py +++ b/configs/recognition/arr_tsm2022/tsm_r50_1x1x8_50e_breakfast_rgb.py @@ -6,7 +6,7 @@ '../../_base_/default_runtime.py' ] # model settings -model = dict(cls_head=dict(num_classes=26))#26 +model = dict(cls_head=dict(num_classes=11))#26 load_from = '/mmaction2/pretrained_models/tsm_r50_256h_1x1x8_50e_sthv2_rgb_20210816-032aa4da.pth' # dataset settings #dataset_type = 'VideoDataset' diff --git a/tools/test_several.py b/tools/test_several.py new file mode 100644 index 0000000000..9c25adba51 --- /dev/null +++ b/tools/test_several.py @@ -0,0 +1,391 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import os +import os.path as osp +import warnings + +import mmcv +import torch +from mmcv import Config, DictAction +from mmcv.cnn import fuse_conv_bn +from mmcv.fileio.io import file_handlers +from mmcv.runner import get_dist_info, init_dist, load_checkpoint +from mmcv.runner.fp16_utils import wrap_fp16_model + +from mmaction.datasets import build_dataloader, build_dataset +from mmaction.models import build_model +from mmaction.utils import (build_ddp, build_dp, default_device, + register_module_hooks, setup_multi_processes) + +# TODO import test functions from mmcv and delete them from mmaction2 +try: + from mmcv.engine import multi_gpu_test, single_gpu_test +except (ImportError, ModuleNotFoundError): + warnings.warn( + 'DeprecationWarning: single_gpu_test, multi_gpu_test, ' + 'collect_results_cpu, collect_results_gpu from mmaction2 will be ' + 'deprecated. Please install mmcv through master branch.') + from mmaction.apis import multi_gpu_test, single_gpu_test + +# TODO import test functions from mmcv and delete them from mmaction2 +try: + from mmcv.engine import multi_gpu_test, single_gpu_test +except (ImportError, ModuleNotFoundError): + warnings.warn( + 'DeprecationWarning: single_gpu_test, multi_gpu_test, ' + 'collect_results_cpu, collect_results_gpu from mmaction2 will be ' + 'deprecated. Please install mmcv through master branch.') + from mmaction.apis import multi_gpu_test, single_gpu_test + + +def parse_args(): + parser = argparse.ArgumentParser( + description='MMAction2 test (and eval) a model') + parser.add_argument('config', help='test config file path') + parser.add_argument('checkpoint', help='checkpoint file') + parser.add_argument( + '--out', + default=None, + help='output result file in pkl/yaml/json format') + parser.add_argument( + '--fuse-conv-bn', + action='store_true', + help='Whether to fuse conv and bn, this will slightly increase' + 'the inference speed') + parser.add_argument( + '--eval', + type=str, + nargs='+', + help='evaluation metrics, which depends on the dataset, e.g.,' + ' "top_k_accuracy", "mean_class_accuracy" for video dataset') + parser.add_argument( + '--gpu-collect', + action='store_true', + help='whether to use gpu to collect results') + parser.add_argument( + '--tmpdir', + help='tmp directory used for collecting results from multiple ' + 'workers, available when gpu-collect is not specified') + parser.add_argument( + '--options', + nargs='+', + action=DictAction, + default={}, + help='custom options for evaluation, the key-value pair in xxx=yyy ' + 'format will be kwargs for dataset.evaluate() function (deprecate), ' + 'change to --eval-options instead.') + parser.add_argument( + '--eval-options', + nargs='+', + action=DictAction, + default={}, + help='custom options for evaluation, the key-value pair in xxx=yyy ' + 'format will be kwargs for dataset.evaluate() function') + parser.add_argument( + '--cfg-options', + nargs='+', + action=DictAction, + default={}, + help='override some settings in the used config, the key-value pair ' + 'in xxx=yyy format will be merged into config file. For example, ' + "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") + parser.add_argument( + '--average-clips', + choices=['score', 'prob', None], + default=None, + help='average type when averaging test clips') + parser.add_argument( + '--launcher', + choices=['none', 'pytorch', 'slurm', 'mpi'], + default='none', + help='job launcher') + parser.add_argument('--local_rank', type=int, default=0) + parser.add_argument( + '--onnx', + action='store_true', + help='Whether to test with onnx model or not') + parser.add_argument( + '--tensorrt', + action='store_true', + help='Whether to test with TensorRT engine or not') + args = parser.parse_args() + if 'LOCAL_RANK' not in os.environ: + os.environ['LOCAL_RANK'] = str(args.local_rank) + + if args.options and args.eval_options: + raise ValueError( + '--options and --eval-options cannot be both ' + 'specified, --options is deprecated in favor of --eval-options') + if args.options: + warnings.warn('--options is deprecated in favor of --eval-options') + args.eval_options = args.options + return args + + +def turn_off_pretrained(cfg): + # recursively find all pretrained in the model config, + # and set them None to avoid redundant pretrain steps for testing + if 'pretrained' in cfg: + cfg.pretrained = None + + # recursively turn off pretrained value + for sub_cfg in cfg.values(): + if isinstance(sub_cfg, dict): + turn_off_pretrained(sub_cfg) + + +def inference_pytorch(args, cfg, distributed, data_loader): + """Get predictions by pytorch models.""" + if args.average_clips is not None: + # You can set average_clips during testing, it will override the + # original setting + if cfg.model.get('test_cfg') is None and cfg.get('test_cfg') is None: + cfg.model.setdefault('test_cfg', + dict(average_clips=args.average_clips)) + else: + if cfg.model.get('test_cfg') is not None: + cfg.model.test_cfg.average_clips = args.average_clips + else: + cfg.test_cfg.average_clips = args.average_clips + + # remove redundant pretrain steps for testing + turn_off_pretrained(cfg.model) + + # build the model and load checkpoint + model = build_model( + cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg')) + + if len(cfg.module_hooks) > 0: + register_module_hooks(model, cfg.module_hooks) + + fp16_cfg = cfg.get('fp16', None) + if fp16_cfg is not None: + wrap_fp16_model(model) + load_checkpoint(model, args.checkpoint, map_location='cpu') + + if args.fuse_conv_bn: + model = fuse_conv_bn(model) + + if not distributed: + model = build_dp( + model, default_device, default_args=dict(device_ids=cfg.gpu_ids)) + outputs = single_gpu_test(model, data_loader) + else: + model = build_ddp( + model, + default_device, + default_args=dict( + device_ids=[int(os.environ['LOCAL_RANK'])], + broadcast_buffers=False)) + outputs = multi_gpu_test(model, data_loader, args.tmpdir, + args.gpu_collect) + + return outputs + + +def inference_tensorrt(ckpt_path, distributed, data_loader, batch_size): + """Get predictions by TensorRT engine. + + For now, multi-gpu mode and dynamic tensor shape are not supported. + """ + assert not distributed, \ + 'TensorRT engine inference only supports single gpu mode.' + import tensorrt as trt + from mmcv.tensorrt.tensorrt_utils import (torch_device_from_trt, + torch_dtype_from_trt) + + # load engine + with trt.Logger() as logger, trt.Runtime(logger) as runtime: + with open(ckpt_path, mode='rb') as f: + engine_bytes = f.read() + engine = runtime.deserialize_cuda_engine(engine_bytes) + + # For now, only support fixed input tensor + cur_batch_size = engine.get_binding_shape(0)[0] + assert batch_size == cur_batch_size, \ + ('Dataset and TensorRT model should share the same batch size, ' + f'but get {batch_size} and {cur_batch_size}') + + context = engine.create_execution_context() + + # get output tensor + dtype = torch_dtype_from_trt(engine.get_binding_dtype(1)) + shape = tuple(context.get_binding_shape(1)) + device = torch_device_from_trt(engine.get_location(1)) + output = torch.empty( + size=shape, dtype=dtype, device=device, requires_grad=False) + + # get predictions + results = [] + dataset = data_loader.dataset + prog_bar = mmcv.ProgressBar(len(dataset)) + for data in data_loader: + bindings = [ + data['imgs'].contiguous().data_ptr(), + output.contiguous().data_ptr() + ] + context.execute_async_v2(bindings, + torch.cuda.current_stream().cuda_stream) + results.extend(output.cpu().numpy()) + batch_size = len(next(iter(data.values()))) + for _ in range(batch_size): + prog_bar.update() + return results + + +def inference_onnx(ckpt_path, distributed, data_loader, batch_size): + """Get predictions by ONNX. + + For now, multi-gpu mode and dynamic tensor shape are not supported. + """ + assert not distributed, 'ONNX inference only supports single gpu mode.' + + import onnx + import onnxruntime as rt + + # get input tensor name + onnx_model = onnx.load(ckpt_path) + input_all = [node.name for node in onnx_model.graph.input] + input_initializer = [node.name for node in onnx_model.graph.initializer] + net_feed_input = list(set(input_all) - set(input_initializer)) + assert len(net_feed_input) == 1 + + # For now, only support fixed tensor shape + input_tensor = None + for tensor in onnx_model.graph.input: + if tensor.name == net_feed_input[0]: + input_tensor = tensor + break + cur_batch_size = input_tensor.type.tensor_type.shape.dim[0].dim_value + assert batch_size == cur_batch_size, \ + ('Dataset and ONNX model should share the same batch size, ' + f'but get {batch_size} and {cur_batch_size}') + + # get predictions + sess = rt.InferenceSession(ckpt_path) + results = [] + dataset = data_loader.dataset + prog_bar = mmcv.ProgressBar(len(dataset)) + for data in data_loader: + imgs = data['imgs'].cpu().numpy() + onnx_result = sess.run(None, {net_feed_input[0]: imgs})[0] + results.extend(onnx_result) + batch_size = len(next(iter(data.values()))) + for _ in range(batch_size): + prog_bar.update() + return results + + +def main(): + args = parse_args() + + if args.tensorrt and args.onnx: + raise ValueError( + 'Cannot set onnx mode and tensorrt mode at the same time.') + + cfg = Config.fromfile(args.config) + + cfg.merge_from_dict(args.cfg_options) + cfg.gpu_ids = [0] + # set multi-process settings + setup_multi_processes(cfg) + + # Load output_config from cfg + output_config = cfg.get('output_config', {}) + if args.out: + # Overwrite output_config from args.out + output_config = Config._merge_a_into_b( + dict(out=args.out), output_config) + + # Load eval_config from cfg + eval_config = cfg.get('eval_config', {}) + if args.eval: + # Overwrite eval_config from args.eval + eval_config = Config._merge_a_into_b( + dict(metrics=args.eval), eval_config) + if args.eval_options: + # Add options from args.eval_options + eval_config = Config._merge_a_into_b(args.eval_options, eval_config) + + assert output_config or eval_config, \ + ('Please specify at least one operation (save or eval the ' + 'results) with the argument "--out" or "--eval"') + + dataset_type = cfg.data.test.type + if output_config.get('out', None): + if 'output_format' in output_config: + # ugly workround to make recognition and localization the same + warnings.warn( + 'Skip checking `output_format` in localization task.') + else: + out = output_config['out'] + # make sure the dirname of the output path exists + mmcv.mkdir_or_exist(osp.dirname(out)) + _, suffix = osp.splitext(out) + if dataset_type == 'AVADataset': + assert suffix[1:] == 'csv', ('For AVADataset, the format of ' + 'the output file should be csv') + else: + assert suffix[1:] in file_handlers, ( + 'The format of the output ' + 'file should be json, pickle or yaml') + + # set cudnn benchmark + if cfg.get('cudnn_benchmark', False): + torch.backends.cudnn.benchmark = True + cfg.data.test.test_mode = True + + # init distributed env first, since logger depends on the dist info. + if args.launcher == 'none': + distributed = False + else: + distributed = True + init_dist(args.launcher, **cfg.dist_params) + + # The flag is used to register module's hooks + cfg.setdefault('module_hooks', []) + + # build the dataloader + dataset = build_dataset(cfg.data.test, dict(test_mode=True)) + dataloader_setting = dict( + videos_per_gpu=cfg.data.get('videos_per_gpu', 1), + workers_per_gpu=cfg.data.get('workers_per_gpu', 1), + dist=distributed, + shuffle=False) + dataloader_setting = dict(dataloader_setting, + **cfg.data.get('test_dataloader', {})) + data_loader = build_dataloader(dataset, **dataloader_setting) + + scores_top1_acc = [] + scores_top5_acc = [] + for i in range(10): + if args.tensorrt: + outputs = inference_tensorrt(args.checkpoint, distributed, data_loader, + dataloader_setting['videos_per_gpu']) + elif args.onnx: + outputs = inference_onnx(args.checkpoint, distributed, data_loader, + dataloader_setting['videos_per_gpu']) + else: + outputs = inference_pytorch(args, cfg, distributed, data_loader) + + rank, _ = get_dist_info() + if rank == 0: + if output_config.get('out', None): + out = output_config['out'] + print(f'\nwriting results to {out}') + dataset.dump_results(outputs, **output_config) + if eval_config: + eval_res = dataset.evaluate(outputs, **eval_config) + for name, val in eval_res.items(): + print(f'{name}: {val:.04f}') + if name == 'top1_acc': + scores_top1_acc.append(val) + if name == 'top5_acc': + scores_top5_acc.append(val) + import numpy as np + print(f'\nAverage top1_acc: {np.mean(scores_top1_acc):.04f}; std {np.std(scores_top1_acc):.04f}') + print(f'Average top5_acc: {np.mean(scores_top5_acc):.04f}; std {np.std(scores_top5_acc):.04f}') + + +if __name__ == '__main__': + main()