-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeep_largest_component.py
93 lines (74 loc) · 2.52 KB
/
keep_largest_component.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
Based on https://github.com/neuropoly/totalsegmentator-mri
"""
import os, argparse, textwrap
from scipy.ndimage import label
from pathlib import Path
import numpy as np
import nibabel as nib
def get_parser():
# parse command line arguments
parser = argparse.ArgumentParser(
description=textwrap.dedent(f'''
This script processes a NIfTI segmentation file, leaving the largest component for each label.
'''),
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument(
'--seg-in', type=str, required=True,
help='Input segmentation path'
)
parser.add_argument(
'--seg-out', type=str, required=True,
help='Output segmentation path'
)
parser.add_argument(
'--verbose', '-v', type=int, default=1, choices=[0, 1],
help='Verbosity level. 0: Errors/warnings only, 1: Errors/warnings + info (default: 1)'
)
return parser
def main():
"""
"""
parser = get_parser()
args = parser.parse_args()
# Get arguments
seg_in = args.seg_in
seg_out = args.seg_out
verbose = args.verbose
if verbose:
print(textwrap.dedent(f'''
Running {Path(__file__).stem} with the following params:
seg_in = "{seg_in}"
seg_out = "{seg_out}"
verbose = {verbose}
'''))
# Keep largest component
keep_largest_component(seg_in, seg_out)
def keep_largest_component(
seg_in,
seg_out
):
# Load segmentation
seg = nib.load(seg_in)
seg_data = seg.get_fdata()
# Convert data to uint8 to avoid issues with segmentation IDs
seg_data_src = seg_data.astype(np.uint8)
seg_data = np.zeros_like(seg_data_src)
for l in [_ for _ in np.unique(seg_data_src) if _ != 0]:
mask = seg_data_src == l
mask_labeled, num_labels = label(mask, np.ones((3, 3, 3)))
# Find the label of the largest component
label_sizes = np.bincount(mask_labeled.ravel())[1:] # Skip 0 label size
largest_label = label_sizes.argmax() + 1 # +1 because bincount labels start at 0
seg_data[mask_labeled == largest_label] = l
# Create result segmentation
seg = nib.Nifti1Image(seg_data, seg.affine, seg.header)
seg.set_data_dtype(np.uint8)
# Make sure output directory exists
if not os.path.exists(os.path.dirname(seg_out)):
os.makedirs(os.path.dirname(seg_out))
# Save mapped segmentation
nib.save(seg, seg_out)
if __name__ == '__main__':
main()