diff --git a/docs/src/direct_sum.md b/docs/src/direct_sum.md index 2be763ec44..92bbd94866 100644 --- a/docs/src/direct_sum.md +++ b/docs/src/direct_sum.md @@ -45,7 +45,7 @@ julia> m2 = F(BigInt[9, 7, -2, 2, -4]) (9, 7, -2, 2, -4) julia> S1, f1 = sub(F, [m1, m2]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 5 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 5 over integers) julia> m1 = F(BigInt[3, 1, 7, 7, -7]) (3, 1, 7, 7, -7) @@ -54,7 +54,7 @@ julia> m2 = F(BigInt[-8, 6, 10, -1, 1]) (-8, 6, 10, -1, 1) julia> S2, f2 = sub(F, [m1, m2]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 5 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 5 over integers) julia> m1 = F(BigInt[2, 4, 2, -3, -10]) (2, 4, 2, -3, -10) @@ -63,10 +63,10 @@ julia> m2 = F(BigInt[5, 7, -6, 9, -5]) (5, 7, -6, 9, -5) julia> S3, f3 = sub(F, [m1, m2]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 5 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 5 over integers) julia> D, f = direct_sum(S1, S2, S3) -(DirectSumModule over integers, AbstractAlgebra.Generic.ModuleHomomorphism{BigInt}[Hom: submodule over Integers with 2 generators and no relations -> DirectSumModule over integers, Hom: submodule over Integers with 2 generators and no relations -> DirectSumModule over integers, Hom: submodule over Integers with 2 generators and no relations -> DirectSumModule over integers], AbstractAlgebra.Generic.ModuleHomomorphism{BigInt}[Hom: DirectSumModule over integers -> submodule over Integers with 2 generators and no relations, Hom: DirectSumModule over integers -> submodule over Integers with 2 generators and no relations, Hom: DirectSumModule over integers -> submodule over Integers with 2 generators and no relations]) +(DirectSumModule over integers, AbstractAlgebra.Generic.ModuleHomomorphism{BigInt}[Hom: submodule over integers with 2 generators and no relations -> DirectSumModule over integers, Hom: submodule over integers with 2 generators and no relations -> DirectSumModule over integers, Hom: submodule over integers with 2 generators and no relations -> DirectSumModule over integers], AbstractAlgebra.Generic.ModuleHomomorphism{BigInt}[Hom: DirectSumModule over integers -> submodule over integers with 2 generators and no relations, Hom: DirectSumModule over integers -> submodule over integers with 2 generators and no relations, Hom: DirectSumModule over integers -> submodule over integers with 2 generators and no relations]) ``` ## Functionality for direct sums @@ -93,7 +93,7 @@ julia> m2 = F(BigInt[9, 7, -2, 2, -4]) (9, 7, -2, 2, -4) julia> S1, f1 = sub(F, [m1, m2]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 5 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 5 over integers) julia> m1 = F(BigInt[3, 1, 7, 7, -7]) (3, 1, 7, 7, -7) @@ -102,7 +102,7 @@ julia> m2 = F(BigInt[-8, 6, 10, -1, 1]) (-8, 6, 10, -1, 1) julia> S2, f2 = sub(F, [m1, m2]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 5 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 5 over integers) julia> m1 = F(BigInt[2, 4, 2, -3, -10]) (2, 4, 2, -3, -10) @@ -111,16 +111,16 @@ julia> m2 = F(BigInt[5, 7, -6, 9, -5]) (5, 7, -6, 9, -5) julia> S3, f3 = sub(F, [m1, m2]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 5 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 5 over integers) julia> D, f = direct_sum(S1, S2, S3) -(DirectSumModule over integers, AbstractAlgebra.Generic.ModuleHomomorphism{BigInt}[Hom: submodule over Integers with 2 generators and no relations -> DirectSumModule over integers, Hom: submodule over Integers with 2 generators and no relations -> DirectSumModule over integers, Hom: submodule over Integers with 2 generators and no relations -> DirectSumModule over integers], AbstractAlgebra.Generic.ModuleHomomorphism{BigInt}[Hom: DirectSumModule over integers -> submodule over Integers with 2 generators and no relations, Hom: DirectSumModule over integers -> submodule over Integers with 2 generators and no relations, Hom: DirectSumModule over integers -> submodule over Integers with 2 generators and no relations]) +(DirectSumModule over integers, AbstractAlgebra.Generic.ModuleHomomorphism{BigInt}[Hom: submodule over integers with 2 generators and no relations -> DirectSumModule over integers, Hom: submodule over integers with 2 generators and no relations -> DirectSumModule over integers, Hom: submodule over integers with 2 generators and no relations -> DirectSumModule over integers], AbstractAlgebra.Generic.ModuleHomomorphism{BigInt}[Hom: DirectSumModule over integers -> submodule over integers with 2 generators and no relations, Hom: DirectSumModule over integers -> submodule over integers with 2 generators and no relations, Hom: DirectSumModule over integers -> submodule over integers with 2 generators and no relations]) julia> summands(D) 3-element Vector{AbstractAlgebra.Generic.Submodule{BigInt}}: - Submodule over Integers with 2 generators and no relations - Submodule over Integers with 2 generators and no relations - Submodule over Integers with 2 generators and no relations + Submodule over integers with 2 generators and no relations + Submodule over integers with 2 generators and no relations + Submodule over integers with 2 generators and no relations ``` diff --git a/docs/src/free_associative_algebra.md b/docs/src/free_associative_algebra.md index 43c8157750..99862cd4a2 100644 --- a/docs/src/free_associative_algebra.md +++ b/docs/src/free_associative_algebra.md @@ -77,7 +77,7 @@ julia> R, (x, y, z) = free_associative_algebra(ZZ, ["x", "y", "z"]) (Free associative algebra on 3 indeterminates over integers, AbstractAlgebra.Generic.FreeAssAlgElem{BigInt}[x, y, z]) julia> B = MPolyBuildCtx(R) -Builder for an element of Free associative algebra on 3 indeterminates over integers +Builder for an element of free associative algebra julia> push_term!(B, ZZ(1), [1,2,3,1]); push_term!(B, ZZ(2), [3,3,1]); finish(B) x*y*z*x + 2*z^2*x diff --git a/docs/src/function_field.md b/docs/src/function_field.md index 205603cca2..453c1848a5 100644 --- a/docs/src/function_field.md +++ b/docs/src/function_field.md @@ -242,7 +242,7 @@ julia> f = (x1^2 + 1)//(x1 + 1)*z1^3 + 4*z1 + 1//(x1 + 1) (x1^2 + 1)//(x1 + 1)*z1^3 + 4*z1 + 1//(x1 + 1) julia> S1, y1 = function_field(f, "y1") -(Function Field over Rationals with defining polynomial (x1^2 + 1)*y1^3 + (4*x1 + 4)*y1 + 1, y1) +(Function Field over rationals with defining polynomial (x1^2 + 1)*y1^3 + (4*x1 + 4)*y1 + 1, y1) julia> a = S1() 0 @@ -263,7 +263,7 @@ julia> g = z2^2 + 3z2 + 1 z2^2 + 3*z2 + 1 julia> S2, y2 = function_field(g, "y2") -(Function Field over Finite field F_23 with defining polynomial y2^2 + 3*y2 + 1, y2) +(Function Field over finite field F_23 with defining polynomial y2^2 + 3*y2 + 1, y2) julia> d = S2(R2(5)) 5 @@ -291,7 +291,7 @@ julia> g = z^2 + 3z + 1 z^2 + 3*z + 1 julia> S, y = function_field(g, "y") -(Function Field over Finite field F_23 with defining polynomial y^2 + 3*y + 1, y) +(Function Field over finite field F_23 with defining polynomial y^2 + 3*y + 1, y) julia> f = (x + 1)*y + 1 (x + 1)*y + 1 @@ -367,7 +367,7 @@ julia> g = z^2 + 3*(x + 1)//(x + 2)*z + 1 z^2 + (3*x + 3)//(x + 2)*z + 1 julia> S, y = function_field(g, "y") -(Function Field over Rationals with defining polynomial (x + 2)*y^2 + (3*x + 3)*y + x + 2, y) +(Function Field over rationals with defining polynomial (x + 2)*y^2 + (3*x + 3)*y + x + 2, y) julia> base_field(S) Rational function field @@ -430,7 +430,7 @@ julia> g = z^2 + 3*(x + 1)//(x + 2)*z + 1 z^2 + (3*x + 3)//(x + 2)*z + 1 julia> S, y = function_field(g, "y") -(Function Field over Rationals with defining polynomial (x + 2)*y^2 + (3*x + 3)*y + x + 2, y) +(Function Field over rationals with defining polynomial (x + 2)*y^2 + (3*x + 3)*y + x + 2, y) julia> f = (-3*x - 5//3)//(x - 2)*y + (x^3 + 1//9*x^2 + 5)//(x - 2) ((-3*x - 5//3)*y + x^3 + 1//9*x^2 + 5)//(x - 2) diff --git a/docs/src/module.md b/docs/src/module.md index d9d3ac1bcd..29985aa422 100644 --- a/docs/src/module.md +++ b/docs/src/module.md @@ -226,10 +226,10 @@ julia> m2 = rand(M, -10:10) (4, 4, -7) julia> S, f = sub(M, [m1, m2]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 3 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers) julia> I, g = image(f) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 3 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers) julia> is_isomorphic(S, I) true @@ -261,15 +261,15 @@ julia> m2 = rand(M, -10:10) (4, 4, -7) julia> S, f = sub(M, [m1, m2]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 3 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers) julia> Q, g = quo(M, S) -(Quotient module over Integers with 2 generators and relations: -[16 -21], Hom: free module of rank 3 over integers -> quotient module over Integers with 2 generators and relations: +(Quotient module over integers with 2 generators and relations: +[16 -21], Hom: free module of rank 3 over integers -> quotient module over integers with 2 generators and relations: [16 -21]) julia> I, f = snf(Q) -(Invariant factor decomposed module over Integers with invariant factors BigInt[0], Hom: invariant factor decomposed module over Integers with invariant factors BigInt[0] -> quotient module over Integers with 2 generators and relations: +(Invariant factor decomposed module over integers with invariant factors BigInt[0], Hom: invariant factor decomposed module over integers with invariant factors BigInt[0] -> quotient module over integers with 2 generators and relations: [16 -21]) julia> invs = invariant_factors(Q) diff --git a/docs/src/module_homomorphism.md b/docs/src/module_homomorphism.md index eae195602e..d868b0df41 100644 --- a/docs/src/module_homomorphism.md +++ b/docs/src/module_homomorphism.md @@ -77,13 +77,13 @@ julia> m = M([ZZ(1), ZZ(2), ZZ(3)]) (1, 2, 3) julia> S, f = sub(M, [m]) -(Submodule over Integers with 1 generator and no relations, Hom: submodule over Integers with 1 generator and no relations -> free module of rank 3 over integers) +(Submodule over integers with 1 generator and no relations, Hom: submodule over integers with 1 generator and no relations -> free module of rank 3 over integers) julia> Q, g = quo(M, S) -(Quotient module over Integers with 2 generators and no relations, Hom: free module of rank 3 over integers -> quotient module over Integers with 2 generators and no relations) +(Quotient module over integers with 2 generators and no relations, Hom: free module of rank 3 over integers -> quotient module over integers with 2 generators and no relations) julia> kernel(g) -(Submodule over Integers with 1 generator and no relations, Hom: submodule over Integers with 1 generator and no relations -> free module of rank 3 over integers) +(Submodule over integers with 1 generator and no relations, Hom: submodule over integers with 1 generator and no relations -> free module of rank 3 over integers) ``` diff --git a/docs/src/mpolynomial.md b/docs/src/mpolynomial.md index cf6998a48d..62734126f0 100644 --- a/docs/src/mpolynomial.md +++ b/docs/src/mpolynomial.md @@ -153,7 +153,7 @@ julia> R, (x, y) = polynomial_ring(ZZ, ["x", "y"]) (Multivariate polynomial ring in 2 variables over integers, AbstractAlgebra.Generic.MPoly{BigInt}[x, y]) julia> C = MPolyBuildCtx(R) -Builder for an element of Multivariate polynomial ring in 2 variables over integers +Builder for an element of multivariate polynomial ring julia> push_term!(C, ZZ(3), [1, 2]); diff --git a/docs/src/ncpolynomial.md b/docs/src/ncpolynomial.md index ca4bba5a45..bf6e26a249 100644 --- a/docs/src/ncpolynomial.md +++ b/docs/src/ncpolynomial.md @@ -69,13 +69,13 @@ Matrix ring of degree 2 over integers julia> S, x = polynomial_ring(R, "x") -(Univariate polynomial ring in x over matrix ring of degree 2 over integers, x) +(Univariate polynomial ring in x over matrix ring, x) julia> T, y = polynomial_ring(S, "y") -(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers, y) +(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring, y) julia> U, z = R["z"] -(Univariate polynomial ring in z over matrix ring of degree 2 over integers, z) +(Univariate polynomial ring in z over matrix ring, z) julia> f = S() 0 @@ -123,10 +123,10 @@ Matrix ring of degree 2 over integers julia> S, x = polynomial_ring(R, "x") -(Univariate polynomial ring in x over matrix ring of degree 2 over integers, x) +(Univariate polynomial ring in x over matrix ring, x) julia> T, y = polynomial_ring(S, "y") -(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers, y) +(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring, y) julia> f = x^3 + 3x + 21 x^3 + [3 0; 0 3]*x + [21 0; 0 21] @@ -150,16 +150,16 @@ julia> n = length(g) 3 julia> U = base_ring(T) -Univariate polynomial ring in x over matrix ring of degree 2 over integers +Univariate polynomial ring in x over matrix ring julia> V = base_ring(y + 1) -Univariate polynomial ring in x over matrix ring of degree 2 over integers +Univariate polynomial ring in x over matrix ring julia> v = var(T) :y julia> U = parent(y + 1) -Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers +Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring julia> g == deepcopy(g) true @@ -210,10 +210,10 @@ Matrix ring of degree 2 over integers julia> S, x = polynomial_ring(R, "x") -(Univariate polynomial ring in x over matrix ring of degree 2 over integers, x) +(Univariate polynomial ring in x over matrix ring, x) julia> T, y = polynomial_ring(S, "y") -(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers, y) +(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring, y) julia> a = zero(T) 0 @@ -268,10 +268,10 @@ Matrix ring of degree 2 over integers julia> S, x = polynomial_ring(R, "x") -(Univariate polynomial ring in x over matrix ring of degree 2 over integers, x) +(Univariate polynomial ring in x over matrix ring, x) julia> T, y = polynomial_ring(S, "y") -(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers, y) +(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring, y) julia> f = x*y^2 + (x + 1)*y + 3 x*y^2 + (x + 1)*y + [3 0; 0 3] @@ -302,10 +302,10 @@ Matrix ring of degree 2 over integers julia> S, x = polynomial_ring(R, "x") -(Univariate polynomial ring in x over matrix ring of degree 2 over integers, x) +(Univariate polynomial ring in x over matrix ring, x) julia> T, y = polynomial_ring(S, "y") -(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers, y) +(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring, y) julia> f = x*y^2 + (x + 1)*y + 3 x*y^2 + (x + 1)*y + [3 0; 0 3] @@ -336,10 +336,10 @@ Matrix ring of degree 2 over integers julia> S, x = polynomial_ring(R, "x") -(Univariate polynomial ring in x over matrix ring of degree 2 over integers, x) +(Univariate polynomial ring in x over matrix ring, x) julia> T, y = polynomial_ring(S, "y") -(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers, y) +(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring, y) julia> f = x*y^2 + (x + 1)*y + 3 x*y^2 + (x + 1)*y + [3 0; 0 3] @@ -370,10 +370,10 @@ Matrix ring of degree 2 over integers julia> S, x = polynomial_ring(R, "x") -(Univariate polynomial ring in x over matrix ring of degree 2 over integers, x) +(Univariate polynomial ring in x over matrix ring, x) julia> T, y = polynomial_ring(S, "y") -(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers, y) +(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring, y) julia> f = x*y^2 + (x + 1)*y + 3 @@ -404,10 +404,10 @@ Matrix ring of degree 2 over integers julia> S, x = polynomial_ring(R, "x") -(Univariate polynomial ring in x over matrix ring of degree 2 over integers, x) +(Univariate polynomial ring in x over matrix ring, x) julia> T, y = polynomial_ring(S, "y") -(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring of degree 2 over integers, y) +(Univariate polynomial ring in y over univariate polynomial ring in x over matrix ring, y) julia> f = x*y^2 + (x + 1)*y + 3 x*y^2 + (x + 1)*y + [3 0; 0 3] diff --git a/docs/src/quotient_module.md b/docs/src/quotient_module.md index 38ef779f05..64d13e7193 100644 --- a/docs/src/quotient_module.md +++ b/docs/src/quotient_module.md @@ -48,10 +48,10 @@ julia> m = M([ZZ(1), ZZ(2)]) (1, 2) julia> N, f = sub(M, [m]) -(Submodule over Integers with 1 generator and no relations, Hom: submodule over Integers with 1 generator and no relations -> free module of rank 2 over integers) +(Submodule over integers with 1 generator and no relations, Hom: submodule over integers with 1 generator and no relations -> free module of rank 2 over integers) julia> Q, g = quo(M, N) -(Quotient module over Integers with 1 generator and no relations, Hom: free module of rank 2 over integers -> quotient module over Integers with 1 generator and no relations) +(Quotient module over integers with 1 generator and no relations, Hom: free module of rank 2 over integers -> quotient module over integers with 1 generator and no relations) julia> p = M([ZZ(3), ZZ(1)]) (3, 1) @@ -66,12 +66,10 @@ julia> m = V([QQ(1), QQ(2)]) (1//1, 2//1) julia> N, f = sub(V, [m]) -(Subspace over Rationals with 1 generator and no relations, Hom: subspace over Rationals with 1 generator and no relations -> vector space of dimension 2 over rationals) +(Subspace over rationals with 1 generator and no relations, Hom: subspace over rationals with 1 generator and no relations -> vector space of dimension 2 over rationals) julia> Q, g = quo(V, N) -(Quotient space over: -Rationals with 1 generator and no relations, Hom: vector space of dimension 2 over rationals -> quotient space over: -Rationals with 1 generator and no relations) +(Quotient space over rationals with 1 generator and no relations, Hom: vector space of dimension 2 over rationals -> quotient space over rationals with 1 generator and no relations) ``` @@ -98,11 +96,11 @@ julia> m = M([ZZ(2), ZZ(3)]) (2, 3) julia> N, g = sub(M, [m]) -(Submodule over Integers with 1 generator and no relations, Hom: submodule over Integers with 1 generator and no relations -> free module of rank 2 over integers) +(Submodule over integers with 1 generator and no relations, Hom: submodule over integers with 1 generator and no relations -> free module of rank 2 over integers) julia> Q, h = quo(M, N) -(Quotient module over Integers with 2 generators and relations: -[2 3], Hom: free module of rank 2 over integers -> quotient module over Integers with 2 generators and relations: +(Quotient module over integers with 2 generators and relations: +[2 3], Hom: free module of rank 2 over integers -> quotient module over integers with 2 generators and relations: [2 3]) julia> supermodule(Q) == M @@ -115,12 +113,10 @@ julia> m = V([QQ(1), QQ(2)]) (1//1, 2//1) julia> N, f = sub(V, [m]) -(Subspace over Rationals with 1 generator and no relations, Hom: subspace over Rationals with 1 generator and no relations -> vector space of dimension 2 over rationals) +(Subspace over rationals with 1 generator and no relations, Hom: subspace over rationals with 1 generator and no relations -> vector space of dimension 2 over rationals) julia> Q, g = quo(V, N) -(Quotient space over: -Rationals with 1 generator and no relations, Hom: vector space of dimension 2 over rationals -> quotient space over: -Rationals with 1 generator and no relations) +(Quotient space over rationals with 1 generator and no relations, Hom: vector space of dimension 2 over rationals -> quotient space over rationals with 1 generator and no relations) julia> dim(V) 2 diff --git a/docs/src/submodule.md b/docs/src/submodule.md index 0db59aa58d..d13090a878 100644 --- a/docs/src/submodule.md +++ b/docs/src/submodule.md @@ -54,7 +54,7 @@ julia> n = M([ZZ(2), ZZ(-1)]) (2, -1) julia> N, f = sub(M, [m, n]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 2 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 2 over integers) julia> v = N([ZZ(3), ZZ(4)]) (3, 4) @@ -72,7 +72,7 @@ julia> n = V([QQ(2), QQ(-1)]) (2//1, -1//1) julia> N, f = sub(V, [m, n]) -(Subspace over Rationals with 2 generators and no relations, Hom: subspace over Rationals with 2 generators and no relations -> vector space of dimension 2 over rationals) +(Subspace over rationals with 2 generators and no relations, Hom: subspace over rationals with 2 generators and no relations -> vector space of dimension 2 over rationals) ``` @@ -112,10 +112,10 @@ julia> n = M([ZZ(1), ZZ(4)]) (1, 4) julia> N1, = sub(M, [m, n]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 2 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 2 over integers) julia> N2, = sub(M, [m]) -(Submodule over Integers with 1 generator and no relations, Hom: submodule over Integers with 1 generator and no relations -> free module of rank 2 over integers) +(Submodule over integers with 1 generator and no relations, Hom: submodule over integers with 1 generator and no relations -> free module of rank 2 over integers) julia> supermodule(N1) == M true @@ -134,7 +134,7 @@ julia> m = V([QQ(2), QQ(3)]) (2//1, 3//1) julia> N, = sub(V, [m]) -(Subspace over Rationals with 1 generator and no relations, Hom: subspace over Rationals with 1 generator and no relations -> vector space of dimension 2 over rationals) +(Subspace over rationals with 1 generator and no relations, Hom: subspace over rationals with 1 generator and no relations -> vector space of dimension 2 over rationals) julia> dim(V) 2 @@ -164,10 +164,10 @@ julia> n = M([ZZ(1), ZZ(4)]) (1, 4) julia> N1 = sub(M, [m, n]) -(Submodule over Integers with 2 generators and no relations, Hom: submodule over Integers with 2 generators and no relations -> free module of rank 2 over integers) +(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 2 over integers) julia> N2 = sub(M, [m]) -(Submodule over Integers with 1 generator and no relations, Hom: submodule over Integers with 1 generator and no relations -> free module of rank 2 over integers) +(Submodule over integers with 1 generator and no relations, Hom: submodule over integers with 1 generator and no relations -> free module of rank 2 over integers) julia> I = intersect(N1, N2) Any[] diff --git a/docs/src/total_fraction.md b/docs/src/total_fraction.md index 5fd0e4d79f..445c54f85f 100644 --- a/docs/src/total_fraction.md +++ b/docs/src/total_fraction.md @@ -79,7 +79,7 @@ julia> R, x = polynomial_ring(ZZ, "x") (Univariate polynomial ring in x over integers, x) julia> S = total_ring_of_fractions(R) -Total ring of fractions of Univariate polynomial ring in x over integers +Total ring of fractions of univariate polynomial ring julia> f = S() 0 @@ -119,7 +119,7 @@ julia> R, x = polynomial_ring(QQ, "x") (Univariate polynomial ring in x over rationals, x) julia> S = total_ring_of_fractions(R) -Total ring of fractions of Univariate polynomial ring in x over rationals +Total ring of fractions of univariate polynomial ring julia> f = S(x + 1) x + 1 @@ -168,7 +168,7 @@ julia> R, x = polynomial_ring(QQ, "x") (Univariate polynomial ring in x over rationals, x) julia> S = total_ring_of_fractions(R) -Total ring of fractions of Univariate polynomial ring in x over rationals +Total ring of fractions of univariate polynomial ring julia> f = S(x + 1) x + 1 @@ -180,7 +180,7 @@ julia> V = base_ring(f) Univariate polynomial ring in x over rationals julia> T = parent(f) -Total ring of fractions of Univariate polynomial ring in x over rationals +Total ring of fractions of univariate polynomial ring julia> m = characteristic(S) 0 @@ -222,7 +222,7 @@ julia> R, x = polynomial_ring(QQ, "x") (Univariate polynomial ring in x over rationals, x) julia> S = total_ring_of_fractions(R) -Total ring of fractions of Univariate polynomial ring in x over rationals +Total ring of fractions of univariate polynomial ring julia> f = S(x + 1) x + 1 @@ -268,7 +268,7 @@ rand(R::TotFracRing, v...) julia> R, = residue_ring(ZZ, 12); julia> K = total_ring_of_fractions(R) -Total ring of fractions of Residue ring of integers modulo 12 +Total ring of fractions of residue ring julia> f = rand(K, 0:11) 7//5 @@ -277,7 +277,7 @@ julia> R, x = polynomial_ring(ZZ, "x") (Univariate polynomial ring in x over integers, x) julia> S = total_ring_of_fractions(R) -Total ring of fractions of Univariate polynomial ring in x over integers +Total ring of fractions of univariate polynomial ring julia> g = rand(S, -1:3, -10:10) (4*x + 4)//(-4*x^2 - x + 4) diff --git a/src/NCPoly.jl b/src/NCPoly.jl index 7b1371650b..39302ba200 100644 --- a/src/NCPoly.jl +++ b/src/NCPoly.jl @@ -150,9 +150,8 @@ number_of_generators(R::NCPolyRing) = 1 ############################################################################### function show(io::IO, p::NCPolyRing) - io = pretty(io) print(io, "Univariate polynomial ring in ", var(p), " over ") - print(IOContext(io, :compact => true), Lowercase(), base_ring(p)) + print(terse(pretty(io)), Lowercase(), base_ring(p)) end ############################################################################### diff --git a/src/generic/DirectSum.jl b/src/generic/DirectSum.jl index 2e722bbf2e..389cf52496 100644 --- a/src/generic/DirectSum.jl +++ b/src/generic/DirectSum.jl @@ -49,7 +49,8 @@ function show(io::IO, N::DirectSumModule{T}) where T <: RingElement print(io, LowercaseOff(), "DirectSumModule") else io = pretty(io) - print(io, LowercaseOff(), "DirectSumModule over ", Lowercase(), base_ring(N)) + print(io, LowercaseOff(), "DirectSumModule over ") + print(terse(io), Lowercase(), base_ring(N)) end end diff --git a/src/generic/FreeModule.jl b/src/generic/FreeModule.jl index ab20cec12c..71a63cfbf5 100644 --- a/src/generic/FreeModule.jl +++ b/src/generic/FreeModule.jl @@ -74,8 +74,7 @@ function show(io::IO, M::FreeModule{T}) where T <: Union{RingElement, NCRingElem print(io, "Free module of rank ") print(io, rank(M)) print(io, " over ") - io = pretty(io) - print(IOContext(io, :compact => true), Lowercase(), base_ring(M)) + print(terse(pretty(io)), Lowercase(), base_ring(M)) end function show(io::IO, M::FreeModule{T}) where T <: FieldElement @@ -85,8 +84,7 @@ function show(io::IO, M::FreeModule{T}) where T <: FieldElement print(io, "Vector space of dimension ") print(io, dim(M)) print(io, " over ") - io = pretty(io) - print(IOContext(io, :compact => true), Lowercase(), base_ring(M)) + print(terse(pretty(io)), Lowercase(), base_ring(M)) end function show(io::IO, a::FreeModuleElem) diff --git a/src/generic/FunctionField.jl b/src/generic/FunctionField.jl index e79a936040..c89a19f78d 100644 --- a/src/generic/FunctionField.jl +++ b/src/generic/FunctionField.jl @@ -772,7 +772,7 @@ end @enable_all_show_via_expressify FunctionFieldElem function show(io::IO, R::FunctionField) - print(IOContext(io, :compact => true), "Function Field over ", + print(terse(pretty(io)), "Function Field over ", Lowercase(), base_ring(base_ring(R)), " with defining polynomial ", numerator(R)) end diff --git a/src/generic/InvariantFactorDecomposition.jl b/src/generic/InvariantFactorDecomposition.jl index ab5562e8b7..f06c1b00df 100644 --- a/src/generic/InvariantFactorDecomposition.jl +++ b/src/generic/InvariantFactorDecomposition.jl @@ -57,14 +57,14 @@ end function show(io::IO, N::SNFModule{T}) where T <: RingElement print(io, "Invariant factor decomposed module over ") - print(IOContext(io, :compact => true), base_ring(N)) + print(terse(pretty(io)), Lowercase(), base_ring(N)) print(io, " with invariant factors ") print(IOContext(io, :compact => true), invariant_factors(N)) end function show(io::IO, N::SNFModule{T}) where T <: FieldElement print(io, "Vector space over ") - print(IOContext(io, :compact => true), base_ring(N)) + print(terse(pretty(io)), Lowercase(), base_ring(N)) print(io, " with dimension ") print(io, ngens(N)) end diff --git a/src/generic/MPoly.jl b/src/generic/MPoly.jl index 787b4c08a1..5069e2350f 100644 --- a/src/generic/MPoly.jl +++ b/src/generic/MPoly.jl @@ -3852,8 +3852,8 @@ function MPolyBuildCtx(R::AbstractAlgebra.NCRing) end function show(io::IO, M::MPolyBuildCtx) - iocomp = IOContext(io, :compact => true) - print(iocomp, "Builder for an element of ", parent(M.poly)) + print(io, "Builder for an element of ") + print(terse(pretty(io)), Lowercase(), parent(M.poly)) end @doc raw""" diff --git a/src/generic/Misc/Localization.jl b/src/generic/Misc/Localization.jl index 5ba7286a71..e9c63f1e6f 100644 --- a/src/generic/Misc/Localization.jl +++ b/src/generic/Misc/Localization.jl @@ -166,10 +166,11 @@ function show(io::IO, a::LocalizedEuclideanRingElem) end function show(io::IO, L::LocalizedEuclideanRing) + io = pretty(io) if L.comp - print(io, "Localization of ", base_ring(L), " at complement of ", prime(L)) + print(io, "Localization of ", Lowercase(), base_ring(L), " at complement of ", prime(L)) else - print(io, "Localization of ", base_ring(L), " at ", prime(L)) + print(io, "Localization of ", Lowercase(), base_ring(L), " at ", prime(L)) end end diff --git a/src/generic/QuotientModule.jl b/src/generic/QuotientModule.jl index bf8838cfbf..69a54f219b 100644 --- a/src/generic/QuotientModule.jl +++ b/src/generic/QuotientModule.jl @@ -65,13 +65,13 @@ end function show(io::IO, N::QuotientModule{T}) where T <: RingElement print(io, "Quotient module over ") - print(IOContext(io, :compact => true), base_ring(N)) + print(terse(pretty(io)), Lowercase(), base_ring(N)) show_gens_rels(io, N) end function show(io::IO, N::QuotientModule{T}) where T <: FieldElement - println(io, "Quotient space over:") - print(IOContext(io, :compact => true), base_ring(N)) + print(io, "Quotient space over ") + print(terse(pretty(io)), Lowercase(), base_ring(N)) show_gens_rels(io, N) end diff --git a/src/generic/SparsePoly.jl b/src/generic/SparsePoly.jl index 95111ab1a9..0bcbc5493f 100644 --- a/src/generic/SparsePoly.jl +++ b/src/generic/SparsePoly.jl @@ -109,10 +109,10 @@ function Base.show(io::IO, a::SparsePoly) end function show(io::IO, p::SparsePolyRing) - print(io, "Sparse Univariate Polynomial Ring in ") + print(io, "Sparse univariate polynomial ring in ") print(io, string(p.S)) print(io, " over ") - print(IOContext(io, :compact => true), base_ring(p)) + print(terse(pretty(io)), Lowercase(), base_ring(p)) end ############################################################################### diff --git a/src/generic/Submodule.jl b/src/generic/Submodule.jl index 7686f9435a..bae538ca4a 100644 --- a/src/generic/Submodule.jl +++ b/src/generic/Submodule.jl @@ -55,13 +55,13 @@ supermodule(M::Submodule{T}) where T <: RingElement = M.m function show(io::IO, N::Submodule{T}) where T <: RingElement print(io, "Submodule over ") - print(IOContext(io, :compact => true), base_ring(N)) + print(terse(pretty(io)), Lowercase(), base_ring(N)) show_gens_rels(io, N) end function show(io::IO, N::Submodule{T}) where T <: FieldElement print(io, "Subspace over ") - print(IOContext(io, :compact => true), base_ring(N)) + print(terse(pretty(io)), Lowercase(), base_ring(N)) show_gens_rels(io, N) end diff --git a/src/generic/TotalFraction.jl b/src/generic/TotalFraction.jl index 74b47f394a..5a0f50b419 100644 --- a/src/generic/TotalFraction.jl +++ b/src/generic/TotalFraction.jl @@ -137,7 +137,8 @@ end @enable_all_show_via_expressify TotFrac function show(io::IO, a::TotFracRing) - print(IOContext(io, :compact => true), "Total ring of fractions of ", base_ring(a)) + print(io, "Total ring of fractions of ") + print(terse(pretty(io)), Lowercase(), base_ring(a)) end ###############################################################################