-
Notifications
You must be signed in to change notification settings - Fork 0
/
235. Lowest Common Ancestor of a Binary Search Tree.cpp
76 lines (60 loc) · 2.09 KB
/
235. Lowest Common Ancestor of a Binary Search Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Note:
All of the nodes' values will be unique.
p and q are different and both values will exist in the BST.
Solution one using recursive
Solution two is iterative
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if ( !root ) return nullptr;
if ( root->val > p->val && root->val > q->val )
return lowestCommonAncestor( root->left, p, q );
if ( root->val < p->val && root->val < q->val )
return lowestCommonAncestor( root->right, p, q );
return root;
}
};
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
bool qV, pV;
while ( 1 )
{
if ( root->val == p->val || root->val == q->val ) return root;
if ( p->val < root->val )
pV = 1;
else
pV = 0;
if ( q->val < root->val )
qV = 1;
else
qV = 0;
if ( pV != qV ) return root;
else if ( !pV ) root = root->right;
else if ( pV ) root = root->left;
}
return root;
}
};