-
Notifications
You must be signed in to change notification settings - Fork 0
/
39. Combination Sum.cpp
85 lines (74 loc) · 2.28 KB
/
39. Combination Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/*
Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
The same repeated number may be chosen from candidates unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
[7],
[2,2,3]
]
Example 2:
Input: candidates = [2,3,5], target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
Solution one using recursion
Solution two using inside recursion, sorting and cutting branch
It can be done in DP, but not incuded, basically,
Create a 3d vector for each res set and iterative
*/
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res;
vector<int> out;
Combine( candidates, target, out, res, 0 );
return res;
}
void Combine( vector<int>& candidates, int target, vector<int>& out, vector<vector<int>>& res, int level )
{
if ( target < 0 ) return;
if ( target == 0 )
{
res.push_back( out );
return;
}
for ( int i = level; i < candidates.size(); ++i )
{
out.push_back( candidates[i] );
Combine( candidates, target - candidates[i], out, res, i );
out.pop_back();
}
}
};
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res;
sort( candidates.begin(), candidates.end() );
for ( int i = 0; i < candidates.size(); ++i )
{
if ( candidates[i] > target ) break;
if ( candidates[i] == target )
{
res.push_back( { candidates[i] } );
break;
}
vector<int> vec = vector<int>( candidates.begin() + i, candidates.end() );
vector<vector<int>> temp = combinationSum( vec, target - candidates[i] );
for ( auto &a: temp)
{
a.insert( a.begin(), candidates[i] );
res.push_back( a );
}
}
return res;
}
};