-
Notifications
You must be signed in to change notification settings - Fork 0
/
40. Combination Sum II.cpp
59 lines (51 loc) · 1.51 KB
/
40. Combination Sum II.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/*
Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
Each number in candidates may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
[1,2,2],
[5]
]
Solution using recursive, similiar to #39, except call i + 1 instead of i;
*/
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<vector<int>> res;
vector<int> out;
sort( candidates.begin(), candidates.end() );
helper( candidates, 0, out, res, target );
return res;
}
void helper( vector<int>& candidates, int level, vector<int>& out, vector<vector<int>>& res,
int target )
{
if ( target < 0 ) return;
if ( target == 0 )
{
res.push_back( out );
return;
}
for ( int i = level; i < candidates.size(); ++i )
{
if ( i > level && candidates[i] == candidates[i - 1] ) continue;
out.push_back( candidates[i] );
helper( candidates, i + 1, out, res, target - candidates[i] );
out.pop_back();
}
}
};