forked from PaddlePaddle/TrustAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
237 lines (198 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import json
import functools
import random
import time
import os
import argparse
import numpy as np
import paddle
import paddle.nn.functional as F
from paddle.metric import Accuracy
from paddle.io import DataLoader, BatchSampler, DistributedBatchSampler
from paddlenlp.data import DataCollatorWithPadding
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import AutoModelForSequenceClassification, AutoTokenizer, LinearDecayWithWarmup
from paddlenlp.utils.log import logger
from utils import evaluate, preprocess_function
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir",
default="./checkpoint",
type=str,
help="The output directory where the model checkpoints will be written.")
parser.add_argument("--dataset_dir",
default="./data",
type=str,
help="The dataset directory should include train.tsv, dev.tsv and test.tsv files.")
parser.add_argument("--train_file", type=str, default=None, help="train data filename")
parser.add_argument("--dev_file", type=str, default=None, help="dev data filename")
parser.add_argument("--test_files", type=str, nargs='*', default=None, help="test data filenames")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument('--model_name',
default="ernie-3.0-base-zh",
help="Select model to train, defaults to ernie-3.0-base-zh.")
parser.add_argument('--device',
choices=['cpu', 'gpu', 'xpu', 'npu'],
default="gpu",
help="Select which device to train model, defaults to gpu.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.")
parser.add_argument('--early_stop', type=bool, default=True, help='Epoch before early stop.')
parser.add_argument('--early_stop_nums', type=int, default=2, help='Number of epoch before early stop.')
parser.add_argument("--epochs", default=1000, type=int, help="Total number of training epochs to perform.")
parser.add_argument('--warmup', type=bool, default=True, help="whether use warmup strategy")
parser.add_argument("--warmup_steps", default=1000, type=int, help="Linear warmup steps over the training process.")
parser.add_argument("--logging_steps", default=100, type=int, help="The interval steps to logging.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=3, help="random seed for initialization")
parser.add_argument('--num_classes', type=int, default=2, help='Number of classification.')
args = parser.parse_args()
def set_seed(seed):
"""
Sets random seed
"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
def read(data_path):
"""Reads data"""
with open(data_path, 'r', encoding='utf-8') as f:
for line in f:
splits = line.strip().split('\t')
if len(splits) == 3:
text_a, text_b, label, weight = splits + [1]
else:
text_a, text_b, label, weight = splits
yield {"text_a": text_a, "text_b": text_b, "label": int(label), 'weight': float(weight)}
def train():
"""
Training a hierarchical classification model
"""
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
set_seed(args.seed)
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
train_path = os.path.join(args.dataset_dir, args.train_file)
dev_path = os.path.join(args.dataset_dir, args.dev_file)
train_ds = load_dataset(read, data_path=train_path, lazy=False)
dev_ds = load_dataset(read, data_path=dev_path, lazy=False)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
trans_func = functools.partial(preprocess_function, tokenizer=tokenizer, max_seq_length=args.max_seq_length)
train_ds = train_ds.map(trans_func)
dev_ds = dev_ds.map(trans_func)
# batchify dataset
collate_fn = DataCollatorWithPadding(tokenizer)
if paddle.distributed.get_world_size() > 1:
train_batch_sampler = DistributedBatchSampler(train_ds, batch_size=args.batch_size, shuffle=True)
else:
train_batch_sampler = BatchSampler(train_ds, batch_size=args.batch_size, shuffle=True)
dev_batch_sampler = BatchSampler(dev_ds, batch_size=args.batch_size, shuffle=False)
train_data_loader = DataLoader(dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=collate_fn)
dev_data_loader = DataLoader(dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=collate_fn)
# load test dataloader
if args.test_files is not None:
test_data_loaders = []
for test_file in args.test_files:
test_path = os.path.join(args.dataset_dir, test_file)
test_ds = load_dataset(read, data_path=test_path, lazy=False).map(trans_func)
test_batch_sampler = BatchSampler(test_ds, batch_size=args.batch_size, shuffle=False)
test_data_loader = DataLoader(dataset=test_ds, batch_sampler=test_batch_sampler, collate_fn=collate_fn)
test_data_loaders.append(test_data_loader)
else:
test_data_loaders = []
# define model
model = AutoModelForSequenceClassification.from_pretrained(args.model_name, num_classes=args.num_classes)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
model = paddle.DataParallel(model)
num_training_steps = len(train_data_loader) * args.epochs
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"])]
optimizer = paddle.optimizer.AdamW(learning_rate=lr_scheduler if args.warmup else args.learning_rate,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params)
criterion = paddle.nn.loss.CrossEntropyLoss(reduction='none')
metric = Accuracy()
global_step = 0
best_dev_acc = 0
early_stop_count = 0
tic_train = time.time()
test_file_num = len(test_data_loaders)
test_accs = [0] * test_file_num
best_test_accs = [0] * test_file_num
for epoch in range(1, args.epochs + 1):
if args.early_stop and early_stop_count >= args.early_stop_nums:
logger.info("Early stop!")
break
for step, batch in enumerate(train_data_loader, start=1):
input_ids, token_type_ids, labels, weights = batch['input_ids'], batch['token_type_ids'], batch[
'labels'], batch['weights']
logits = model(input_ids, token_type_ids)
loss = criterion(logits, labels)
loss = loss * weights
loss = loss.mean()
probs = F.softmax(logits, axis=1)
correct = metric.compute(probs, labels)
metric.update(correct)
acc = metric.accumulate()
loss.backward()
optimizer.step()
if args.warmup:
lr_scheduler.step()
optimizer.clear_grad()
global_step += 1
if global_step % args.logging_steps == 0 and rank == 0:
logger.info("global step %d, epoch: %d, batch: %d, loss: %.5f, acc: %.5f, speed: %.2f step/s" %
(global_step, epoch, step, loss, acc, args.logging_steps / (time.time() - tic_train)))
tic_train = time.time()
early_stop_count += 1
dev_acc = evaluate(model, criterion, metric, dev_data_loader, "dev")
if test_file_num != 0:
for n, test_data_loader in enumerate(test_data_loaders):
test_acc = evaluate(model, criterion, metric, test_data_loader, f"test_{n}")
test_accs[n] = test_acc
save_best_path = args.save_dir
if not os.path.exists(save_best_path):
os.makedirs(save_best_path)
# save models
if dev_acc > best_dev_acc:
logger.info("Current best dev accuracy: %.5f" % (dev_acc))
for n, test_acc in enumerate(test_accs):
logger.info("Current best test_%d accuracy: %.5f" % (n, test_acc))
early_stop_count = 0
best_dev_acc = dev_acc
best_test_accs = list(test_accs)
model._layers.save_pretrained(save_best_path)
tokenizer.save_pretrained(save_best_path)
logger.info("Final best dev accuracy: %.5f" % (best_dev_acc))
for n in range(test_file_num):
logger.info("Final best test_%d accuracy: %.5f" % (n, best_test_accs[n]))
logger.info("Save best accuracy text classification model in %s" % (args.save_dir))
if __name__ == "__main__":
train()