-
Notifications
You must be signed in to change notification settings - Fork 0
/
bayes_main_classification_2.py
118 lines (97 loc) · 5.42 KB
/
bayes_main_classification_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from comet_ml import experiment
from data_loader.uts_classification_data_loader import UtsClassificationDataLoader
from models.uts_classification_model import UtsClassificationModel
from trainers.uts_classification_trainer import UtsClassificationTrainer
from evaluater.uts_classification_evaluater import UtsClassificationEvaluater
from utils.config import process_config_UtsClassification
from utils.dirs import create_dirs
from utils.utils import get_args
from comet_ml import Optimizer
import os
import time
from utils.config import get_config_from_json
def process_config_UtsClassification_bayes_optimization(json_file,learning_rate, num_epochs=50, batch_size=16,model_name='fcn'):
config, _ = get_config_from_json(json_file)
config.model.name = model_name
config.model.learning_rate = learning_rate
config.trainer.num_epochs = num_epochs
config.trainer.batch_size = batch_size
config.callbacks.tensorboard_log_dir = os.path.join("experiments",time.strftime("%Y-%m-%d/", time.localtime()),
config.exp.name, config.dataset.name,
config.model.name, "tensorboard_logs",
"lr=%s,epoch=%s,batch=%s" % (
config.model.learning_rate, config.trainer.num_epochs,
config.trainer.batch_size)
)
config.callbacks.checkpoint_dir = os.path.join("experiments", time.strftime("%Y-%m-%d/", time.localtime()),
config.exp.name, config.dataset.name,
config.model.name, "%s-%s-%s" % (
config.model.learning_rate, config.trainer.num_epochs,
config.trainer.batch_size),
"checkpoints/")
config.log_dir = os.path.join("experiments", time.strftime("%Y-%m-%d/", time.localtime()),
config.exp.name, config.dataset.name,
config.model.name, "%s-%s-%s" % (
config.model.learning_rate, config.trainer.num_epochs,
config.trainer.batch_size),
"training_logs/")
config.result_dir = os.path.join("experiments", time.strftime("%Y-%m-%d/", time.localtime()),
config.exp.name, config.dataset.name,
config.model.name, "%s-%s-%s" % (
config.model.learning_rate, config.trainer.num_epochs,
config.trainer.batch_size),
"result/")
return config
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
# capture the config path from the run arguments
# then process the json configuration file
# try:
args = get_args()
config, _ = get_config_from_json(args.config)
bayes_config = {
"algorithm": "bayes",
"parameters": {
# "model": {"type": "categorical", "values": ['cnn','mlp']},
"learning_rate": {"type": "float", "min": 0.001, "max": 0.01},
# "batch_size": {"type": "integer", "min": 16, "max": 32},
# "num_epochs": {"type": "integer", "min": 5, "max": 10},
},
"spec": {
"maxCombo": 10,
"objective": "minimize",
"metric": "test_f1",
"minSampleSize": 100,
"retryAssignLimit": 0,
},
"trials": 1,
"name": "Bayes",
}
opt = Optimizer(bayes_config, api_key=config.comet_api_key, project_name=config.exp_name)
for exp in opt.get_experiments():
args = get_args()
# config = process_config_UtsClassification_bayes_optimization(args.config, exp.get_parameter('model'),exp.get_parameter('learning_rate'),
# exp.get_parameter('batch_size'), exp.get_parameter('num_epochs'))
config = process_config_UtsClassification_bayes_optimization(args.config, exp.get_parameter('learning_rate'))
# except:
# print("missing or invalid arguments")
# exit(0)
# create the experiments dirs
print('Create the data generator.')
data_loader = UtsClassificationDataLoader(config)
print('Create the model.')
model = UtsClassificationModel(config, data_loader.get_inputshape(), data_loader.get_nbclasses())
print('Create the trainer')
trainer = UtsClassificationTrainer(model.model, data_loader.get_train_data(), config)
print('Start training the model.')
trainer.train()
# print('Create the evaluater.')
# evaluater = UtsClassificationEvaluater(trainer.best_model, data_loader.get_test_data(), data_loader.get_nbclasses(),
# config)
#
# print('Start evaluating the model.')
# evaluater.evluate()
exp.log_metric("test_f1", trainer.best_model_val_loss)
print('done')
if __name__ == '__main__':
main()