-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_forecasting.py
48 lines (38 loc) · 1.61 KB
/
main_forecasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from comet_ml import experiment
from data_loader.uts_regression_data_loader import UtsRegressionDataLoader
from models.uts_regression_model import UtsRegressionModel
from trainers.uts_regression_trainer import UtsRegressionModelTrainer
from evaluater.uts_regression_evaluater import UtsRegressionEvaluater
from utils.config import process_config_UtsRegression
from utils.dirs import create_dirs
from utils.utils import get_args
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def main():
# capture the config path from the run arguments
# then process the json configuration file
try:
args = get_args()
config = process_config_UtsRegression(args.config)
except:
print("missing or invalid arguments")
exit(0)
# create the experiments dirs
create_dirs([config.callbacks.tensorboard_log_dir, config.callbacks.checkpoint_dir])
print('Create the data generator.')
data_loader = UtsRegressionDataLoader(config)
print('Create the model.')
input_shape = [data_loader.w, data_loader.m, config.args.batchSize]
output_shape = data_loader.m
model = UtsRegressionModel(config, input_shape, output_shape)
print('Create the trainer')
data = [data_loader.get_train_data(), data_loader.get_valid_data(), data_loader.get_test_data()]
trainer = UtsRegressionModelTrainer(model.model, data, config)
print('Start training the model.')
trainer.train()
print('Create the evaluater.')
evaluater = UtsRegressionEvaluater(model.model, data[2], config)
print('Start evaluating the model.')
evaluater.evluate()
if __name__ == '__main__':
main()