diff --git a/tutorials/W0D1_PythonWorkshop1/W0D1_Tutorial1.ipynb b/tutorials/W0D1_PythonWorkshop1/W0D1_Tutorial1.ipynb index e7fb5e8..0bcccf6 100644 --- a/tutorials/W0D1_PythonWorkshop1/W0D1_Tutorial1.ipynb +++ b/tutorials/W0D1_PythonWorkshop1/W0D1_Tutorial1.ipynb @@ -2009,10 +2009,10 @@ " # Plot sample mean using alpha=0.8 and'C0.' for blue\n", " plt.plot(t, v_mean, 'C0.', alpha=0.8, markersize=10)\n", "\n", - " # Plot mean + standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean + standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(...)\n", "\n", - " # Plot mean - standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean - standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(...)\n", "\n", "\n", @@ -2081,10 +2081,10 @@ " # Plot sample mean using alpha=0.8 and'C0.' for blue\n", " plt.plot(t, v_mean, 'C0.', alpha=0.8, markersize=10)\n", "\n", - " # Plot mean + standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean + standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(t, v_mean + v_std, 'C7.', alpha=0.8)\n", "\n", - " # Plot mean - standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean - standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(t, v_mean - v_std, 'C7.', alpha=0.8)\n", "\n", "\n", diff --git a/tutorials/W0D1_PythonWorkshop1/instructor/W0D1_Tutorial1.ipynb b/tutorials/W0D1_PythonWorkshop1/instructor/W0D1_Tutorial1.ipynb index f1b752d..1e61181 100644 --- a/tutorials/W0D1_PythonWorkshop1/instructor/W0D1_Tutorial1.ipynb +++ b/tutorials/W0D1_PythonWorkshop1/instructor/W0D1_Tutorial1.ipynb @@ -2027,10 +2027,10 @@ " # Plot sample mean using alpha=0.8 and'C0.' for blue\n", " plt.plot(t, v_mean, 'C0.', alpha=0.8, markersize=10)\n", "\n", - " # Plot mean + standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean + standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(...)\n", "\n", - " # Plot mean - standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean - standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(...)\n", "\n", "\n", @@ -2101,10 +2101,10 @@ " # Plot sample mean using alpha=0.8 and'C0.' for blue\n", " plt.plot(t, v_mean, 'C0.', alpha=0.8, markersize=10)\n", "\n", - " # Plot mean + standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean + standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(t, v_mean + v_std, 'C7.', alpha=0.8)\n", "\n", - " # Plot mean - standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean - standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(t, v_mean - v_std, 'C7.', alpha=0.8)\n", "\n", "\n", diff --git a/tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_4441778c.py b/tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_c05a930d.py similarity index 99% rename from tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_4441778c.py rename to tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_c05a930d.py index 61ec666..15bd364 100644 --- a/tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_4441778c.py +++ b/tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_c05a930d.py @@ -50,10 +50,10 @@ # Plot sample mean using alpha=0.8 and'C0.' for blue plt.plot(t, v_mean, 'C0.', alpha=0.8, markersize=10) - # Plot mean + standard deviation with alpha=0.8 and argument 'C7' + # Plot mean + standard deviation with alpha=0.8 and argument 'C7.' plt.plot(t, v_mean + v_std, 'C7.', alpha=0.8) - # Plot mean - standard deviation with alpha=0.8 and argument 'C7' + # Plot mean - standard deviation with alpha=0.8 and argument 'C7.' plt.plot(t, v_mean - v_std, 'C7.', alpha=0.8) diff --git a/tutorials/W0D1_PythonWorkshop1/static/W0D1_Tutorial1_Solution_4441778c_0.png b/tutorials/W0D1_PythonWorkshop1/static/W0D1_Tutorial1_Solution_c05a930d_0.png similarity index 100% rename from tutorials/W0D1_PythonWorkshop1/static/W0D1_Tutorial1_Solution_4441778c_0.png rename to tutorials/W0D1_PythonWorkshop1/static/W0D1_Tutorial1_Solution_c05a930d_0.png diff --git a/tutorials/W0D1_PythonWorkshop1/student/W0D1_Tutorial1.ipynb b/tutorials/W0D1_PythonWorkshop1/student/W0D1_Tutorial1.ipynb index eea2efa..afd9087 100644 --- a/tutorials/W0D1_PythonWorkshop1/student/W0D1_Tutorial1.ipynb +++ b/tutorials/W0D1_PythonWorkshop1/student/W0D1_Tutorial1.ipynb @@ -1801,10 +1801,10 @@ " # Plot sample mean using alpha=0.8 and'C0.' for blue\n", " plt.plot(t, v_mean, 'C0.', alpha=0.8, markersize=10)\n", "\n", - " # Plot mean + standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean + standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(...)\n", "\n", - " # Plot mean - standard deviation with alpha=0.8 and argument 'C7'\n", + " # Plot mean - standard deviation with alpha=0.8 and argument 'C7.'\n", " plt.plot(...)\n", "\n", "\n", @@ -1819,11 +1819,11 @@ "execution": {} }, "source": [ - "[*Click for solution*](https://github.com/NeuromatchAcademy/precourse/tree/main/tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_4441778c.py)\n", + "[*Click for solution*](https://github.com/NeuromatchAcademy/precourse/tree/main/tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_c05a930d.py)\n", "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, diff --git a/tutorials/W0D2_PythonWorkshop2/W0D2_Tutorial1.ipynb b/tutorials/W0D2_PythonWorkshop2/W0D2_Tutorial1.ipynb index b9151d1..1a4339d 100644 --- a/tutorials/W0D2_PythonWorkshop2/W0D2_Tutorial1.ipynb +++ b/tutorials/W0D2_PythonWorkshop2/W0D2_Tutorial1.ipynb @@ -424,7 +424,7 @@ "n = 10000\n", "v_n = el * np.ones([n, step_end])\n", "i = i_mean * (1 + 0.1 * (t_max / dt)**(0.5) * (2 * np.random.random([n, step_end]) - 1))\n", - "nbins = 32\n", + "nbins = 50\n", "\n", "# Loop over time steps\n", "for step, t in enumerate(t_range):\n", @@ -471,7 +471,7 @@ "n = 10000\n", "v_n = el * np.ones([n, step_end])\n", "i = i_mean * (1 + 0.1 * (t_max / dt)**(0.5) * (2 * np.random.random([n, step_end]) - 1))\n", - "nbins = 32\n", + "nbins = 50\n", "\n", "# Loop over time steps\n", "for step, t in enumerate(t_range):\n", @@ -490,14 +490,12 @@ " plt.xlabel('$V_m$ (V)')\n", "\n", " # Plot a histogram at t_max/10 (add labels and parameters histtype='stepfilled' and linewidth=0)\n", - " plt.hist(v_n[:,int(step_end / 10)], nbins,\n", - " histtype='stepfilled', linewidth=0,\n", - " label = 't='+ str(t_max / 10) + 's')\n", + " plt.hist(v_n[:,int(step_end / 10)], nbins, histtype='stepfilled',\n", + " linewidth=0, label=f't={t_max / 10} s')\n", "\n", " # Plot a histogram at t_max (add labels and parameters histtype='stepfilled' and linewidth=0)\n", - " plt.hist(v_n[:, -1], nbins,\n", - " histtype='stepfilled', linewidth=0,\n", - " label = 't='+ str(t_max) + 's')\n", + " plt.hist(v_n[:, -1], nbins, histtype='stepfilled',\n", + " linewidth=0, label=f't={t_max} s')\n", " # Add legend\n", " plt.legend()\n", " plt.show()" diff --git a/tutorials/W0D2_PythonWorkshop2/instructor/W0D2_Tutorial1.ipynb b/tutorials/W0D2_PythonWorkshop2/instructor/W0D2_Tutorial1.ipynb index 41b3692..e410b9d 100644 --- a/tutorials/W0D2_PythonWorkshop2/instructor/W0D2_Tutorial1.ipynb +++ b/tutorials/W0D2_PythonWorkshop2/instructor/W0D2_Tutorial1.ipynb @@ -424,7 +424,7 @@ "n = 10000\n", "v_n = el * np.ones([n, step_end])\n", "i = i_mean * (1 + 0.1 * (t_max / dt)**(0.5) * (2 * np.random.random([n, step_end]) - 1))\n", - "nbins = 32\n", + "nbins = 50\n", "\n", "# Loop over time steps\n", "for step, t in enumerate(t_range):\n", @@ -473,7 +473,7 @@ "n = 10000\n", "v_n = el * np.ones([n, step_end])\n", "i = i_mean * (1 + 0.1 * (t_max / dt)**(0.5) * (2 * np.random.random([n, step_end]) - 1))\n", - "nbins = 32\n", + "nbins = 50\n", "\n", "# Loop over time steps\n", "for step, t in enumerate(t_range):\n", @@ -492,14 +492,12 @@ " plt.xlabel('$V_m$ (V)')\n", "\n", " # Plot a histogram at t_max/10 (add labels and parameters histtype='stepfilled' and linewidth=0)\n", - " plt.hist(v_n[:,int(step_end / 10)], nbins,\n", - " histtype='stepfilled', linewidth=0,\n", - " label = 't='+ str(t_max / 10) + 's')\n", + " plt.hist(v_n[:,int(step_end / 10)], nbins, histtype='stepfilled',\n", + " linewidth=0, label=f't={t_max / 10} s')\n", "\n", " # Plot a histogram at t_max (add labels and parameters histtype='stepfilled' and linewidth=0)\n", - " plt.hist(v_n[:, -1], nbins,\n", - " histtype='stepfilled', linewidth=0,\n", - " label = 't='+ str(t_max) + 's')\n", + " plt.hist(v_n[:, -1], nbins, histtype='stepfilled',\n", + " linewidth=0, label=f't={t_max} s')\n", " # Add legend\n", " plt.legend()\n", " plt.show()" diff --git a/tutorials/W0D2_PythonWorkshop2/solutions/W0D2_Tutorial1_Solution_04b855a3.py b/tutorials/W0D2_PythonWorkshop2/solutions/W0D2_Tutorial1_Solution_c135b57a.py similarity index 75% rename from tutorials/W0D2_PythonWorkshop2/solutions/W0D2_Tutorial1_Solution_04b855a3.py rename to tutorials/W0D2_PythonWorkshop2/solutions/W0D2_Tutorial1_Solution_c135b57a.py index bd6785f..cdf622c 100644 --- a/tutorials/W0D2_PythonWorkshop2/solutions/W0D2_Tutorial1_Solution_04b855a3.py +++ b/tutorials/W0D2_PythonWorkshop2/solutions/W0D2_Tutorial1_Solution_c135b57a.py @@ -8,7 +8,7 @@ n = 10000 v_n = el * np.ones([n, step_end]) i = i_mean * (1 + 0.1 * (t_max / dt)**(0.5) * (2 * np.random.random([n, step_end]) - 1)) -nbins = 32 +nbins = 50 # Loop over time steps for step, t in enumerate(t_range): @@ -27,14 +27,12 @@ plt.xlabel('$V_m$ (V)') # Plot a histogram at t_max/10 (add labels and parameters histtype='stepfilled' and linewidth=0) - plt.hist(v_n[:,int(step_end / 10)], nbins, - histtype='stepfilled', linewidth=0, - label = 't='+ str(t_max / 10) + 's') + plt.hist(v_n[:,int(step_end / 10)], nbins, histtype='stepfilled', + linewidth=0, label=f't={t_max / 10} s') # Plot a histogram at t_max (add labels and parameters histtype='stepfilled' and linewidth=0) - plt.hist(v_n[:, -1], nbins, - histtype='stepfilled', linewidth=0, - label = 't='+ str(t_max) + 's') + plt.hist(v_n[:, -1], nbins, histtype='stepfilled', + linewidth=0, label=f't={t_max} s') # Add legend plt.legend() plt.show() \ No newline at end of file diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_04b855a3_0.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_04b855a3_0.png deleted file mode 100644 index 3ef6e8b..0000000 Binary files a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_04b855a3_0.png and /dev/null differ diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_130ba4a4_0.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_130ba4a4_0.png index 4ddcd95..1da2a57 100644 Binary files a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_130ba4a4_0.png and b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_130ba4a4_0.png differ diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_3973c4c4_0.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_3973c4c4_0.png index b54aea4..a641480 100644 Binary files a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_3973c4c4_0.png and b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_3973c4c4_0.png differ diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_a22fdac7_1.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_a22fdac7_1.png index 738b34b..bcd9ef7 100644 Binary files a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_a22fdac7_1.png and b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_a22fdac7_1.png differ diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_bf9f75ab_0.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_bf9f75ab_0.png index b2dce30..c884718 100644 Binary files a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_bf9f75ab_0.png and b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_bf9f75ab_0.png differ diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_bf9f75ab_1.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_bf9f75ab_1.png index f816f55..b725704 100644 Binary files a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_bf9f75ab_1.png and b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_bf9f75ab_1.png differ diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c135b57a_0.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c135b57a_0.png new file mode 100644 index 0000000..b025861 Binary files /dev/null and b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c135b57a_0.png differ diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c368c1ef_0.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c368c1ef_0.png index ee52005..ab26fec 100644 Binary files a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c368c1ef_0.png and b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c368c1ef_0.png differ diff --git a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c368c1ef_1.png b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c368c1ef_1.png index 2c77d8e..f0dff52 100644 Binary files a/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c368c1ef_1.png and b/tutorials/W0D2_PythonWorkshop2/static/W0D2_Tutorial1_Solution_c368c1ef_1.png differ diff --git a/tutorials/W0D2_PythonWorkshop2/student/W0D2_Tutorial1.ipynb b/tutorials/W0D2_PythonWorkshop2/student/W0D2_Tutorial1.ipynb index c7b4ffd..470e618 100644 --- a/tutorials/W0D2_PythonWorkshop2/student/W0D2_Tutorial1.ipynb +++ b/tutorials/W0D2_PythonWorkshop2/student/W0D2_Tutorial1.ipynb @@ -424,7 +424,7 @@ "n = 10000\n", "v_n = el * np.ones([n, step_end])\n", "i = i_mean * (1 + 0.1 * (t_max / dt)**(0.5) * (2 * np.random.random([n, step_end]) - 1))\n", - "nbins = 32\n", + "nbins = 50\n", "\n", "# Loop over time steps\n", "for step, t in enumerate(t_range):\n", @@ -459,11 +459,11 @@ "execution": {} }, "source": [ - "[*Click for solution*](https://github.com/NeuromatchAcademy/precourse/tree/main/tutorials/W0D2_PythonWorkshop2/solutions/W0D2_Tutorial1_Solution_04b855a3.py)\n", + "[*Click for solution*](https://github.com/NeuromatchAcademy/precourse/tree/main/tutorials/W0D2_PythonWorkshop2/solutions/W0D2_Tutorial1_Solution_c135b57a.py)\n", "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1077,9 +1077,9 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1180,7 +1180,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1444,7 +1444,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1827,9 +1827,9 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -2145,7 +2145,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, diff --git a/tutorials/W0D5_Statistics/W0D5_Tutorial2.ipynb b/tutorials/W0D5_Statistics/W0D5_Tutorial2.ipynb index e7303bd..79a339d 100644 --- a/tutorials/W0D5_Statistics/W0D5_Tutorial2.ipynb +++ b/tutorials/W0D5_Statistics/W0D5_Tutorial2.ipynb @@ -1740,6 +1740,15 @@ "content_review(f\"{feedback_prefix}_Bayesian_inference_with_Gaussian_distribution_Video\")" ] }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "**Note:** The Bayes rule in the video (0:14-3:05) contains a typo: the denominator should be $P(x)$ and not $P(x,\\theta)$. So, the formula should be $ P(\\theta | x) = \\frac{P(x|\\theta) P(\\theta)}{P(x)}$." + ] + }, { "cell_type": "markdown", "metadata": { diff --git a/tutorials/W0D5_Statistics/instructor/W0D5_Tutorial2.ipynb b/tutorials/W0D5_Statistics/instructor/W0D5_Tutorial2.ipynb index 29eb751..9e6356b 100644 --- a/tutorials/W0D5_Statistics/instructor/W0D5_Tutorial2.ipynb +++ b/tutorials/W0D5_Statistics/instructor/W0D5_Tutorial2.ipynb @@ -1748,6 +1748,15 @@ "content_review(f\"{feedback_prefix}_Bayesian_inference_with_Gaussian_distribution_Video\")" ] }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "**Note:** The Bayes rule in the video (0:14-3:05) contains a typo: the denominator should be $P(x)$ and not $P(x,\\theta)$. So, the formula should be $ P(\\theta | x) = \\frac{P(x|\\theta) P(\\theta)}{P(x)}$." + ] + }, { "cell_type": "markdown", "metadata": { diff --git a/tutorials/W0D5_Statistics/student/W0D5_Tutorial2.ipynb b/tutorials/W0D5_Statistics/student/W0D5_Tutorial2.ipynb index b12c40c..4272571 100644 --- a/tutorials/W0D5_Statistics/student/W0D5_Tutorial2.ipynb +++ b/tutorials/W0D5_Statistics/student/W0D5_Tutorial2.ipynb @@ -1607,6 +1607,15 @@ "content_review(f\"{feedback_prefix}_Bayesian_inference_with_Gaussian_distribution_Video\")" ] }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "**Note:** The Bayes rule in the video (0:14-3:05) contains a typo: the denominator should be $P(x)$ and not $P(x,\\theta)$. So, the formula should be $ P(\\theta | x) = \\frac{P(x|\\theta) P(\\theta)}{P(x)}$." + ] + }, { "cell_type": "markdown", "metadata": {