-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnn_async_train.py
494 lines (458 loc) · 14.9 KB
/
dnn_async_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import threading
import torch
import torch.distributed.rpc as rpc
import argparse
from tqdm import tqdm
import numpy as np
from common import (
create_worker_trainloaders,
_get_model,
get_optimizer,
get_scheduler,
compute_accuracy_loss,
get_base_name,
_save_model,
save_weights,
compute_weights_l2_norm,
read_parser,
start,
_delay,
set_seeds,
LOSS_FUNC,
)
#################################### PARAMETER SERVER ####################################
class ParameterServer_async(object):
def __init__(
self,
nb_workers,
logger,
dataset_name,
learning_rate,
momentum,
seed,
use_alr,
len_trainloader,
epochs,
lrs,
saves_per_epoch,
val,
alt_model,
train_loader=None,
val_loader=None,
compensation=False,
):
if seed:
set_seeds()
self.model = _get_model(dataset_name, LOSS_FUNC, alt_model)
self.logger = logger
self.model_lock = threading.Lock()
self.nb_workers = nb_workers
self.loss = 0 # store workers loss
self.optimizer = get_optimizer(self.model, learning_rate, momentum, use_alr)
self.scheduler = get_scheduler(lrs, self.optimizer, len_trainloader, epochs)
self.weights_matrix = []
if saves_per_epoch is not None:
weights = np.concatenate(
[
w.detach().clone().cpu().numpy().ravel()
for w in self.model.state_dict().values()
]
)
self.weights_matrix.append(weights)
self.saves_per_epoch = saves_per_epoch
if lrs is not None or saves_per_epoch is not None or val:
self.global_batch_counter = 0
if saves_per_epoch is not None:
save_idx = np.linspace(0, len_trainloader - 1, saves_per_epoch, dtype=int)
unique_idx = set(save_idx)
if len(unique_idx) < saves_per_epoch:
save_idx = np.array(sorted(unique_idx))
self.save_idx = save_idx
self.val = val
if val:
self.train_loader = train_loader
self.val_loader = val_loader
for params in self.model.parameters():
params.grad = torch.zeros_like(params)
self.compensation = compensation
if compensation:
self.backups = [
[
torch.randn_like(param, requires_grad=False)
for param in self.model.parameters()
]
for _ in range(nb_workers)
]
def get_model_async(self, id):
if self.compensation:
id = int(id.split("_")[1]) - 1
self.backups[id] = [param for param in self.model.parameters()]
return self.model
def get_current_lr_async(self):
return self.optimizer.param_groups[0]["lr"]
@staticmethod
@rpc.functions.async_execution
def update_and_fetch_model_async(
ps_rref,
grads,
worker_name,
worker_batch_count,
worker_epoch,
total_batches_to_run,
total_epochs,
loss,
):
self = ps_rref.local_value()
self.logger.debug(
f"PS got update from {worker_name}, {worker_batch_count - total_batches_to_run*(worker_epoch-1)}/{total_batches_to_run} ({worker_batch_count}/{total_batches_to_run*total_epochs}), epoch {worker_epoch}/{total_epochs}"
)
with self.model_lock:
self.loss = loss
if (
self.scheduler is not None
or self.saves_per_epoch is not None
or self.val
):
self.global_batch_counter += 1
for i, (param, grad) in enumerate(zip(self.model.parameters(), grads)):
if self.compensation:
param.grad = grad + 2 * grad * grad * (
param - self.backups[int(worker_name.split("_")[1]) - 1][i]
)
else:
param.grad = grad
self.optimizer.step()
self.optimizer.zero_grad()
if self.saves_per_epoch is not None:
relative_batch_idx = (
self.global_batch_counter / self.nb_workers - 1
) % total_batches_to_run
if relative_batch_idx in self.save_idx:
weights = np.concatenate(
[
w.detach().clone().cpu().numpy().ravel()
for w in self.model.state_dict().values()
]
)
self.weights_matrix.append(weights)
if self.scheduler is not None or self.val:
if (
self.global_batch_counter % (total_batches_to_run * self.nb_workers)
== 0
):
if self.scheduler is not None:
self.scheduler.step()
if self.val:
(
train_acc,
train_corr,
train_tot,
train_loss,
) = compute_accuracy_loss(
self.model, self.train_loader, LOSS_FUNC, return_loss=True
)
val_acc, val_corr, val_tot, val_loss = compute_accuracy_loss(
self.model, self.val_loader, LOSS_FUNC, return_loss=True
)
self.logger.debug(
f"Train loss: {train_loss}, train accuracy: {train_acc*100} % ({train_corr}/{train_tot}), val loss: {val_loss}, val accuracy: {val_acc*100} % ({val_corr}/{val_tot}), epoch: {worker_epoch}/{total_epochs}"
)
self.logger.debug(
f"PS updated model, worker loss: {loss} ({worker_name}), weight norm: weights norm {compute_weights_l2_norm(self.model)}"
)
return self.model
#################################### WORKER ####################################
class Worker_async(object):
def __init__(
self,
ps_rref,
logger,
train_loader,
epochs,
delay,
delay_intensity,
delay_type,
slow_worker_1,
dataset_name,
):
self.ps_rref = ps_rref
self.train_loader = train_loader
self.loss_func = LOSS_FUNC
self.logger = logger
self.batch_count = 0
self.current_epoch = 0
self.epochs = epochs
self.worker_name = rpc.get_worker_info().name
self.delay = delay
self.delay_intensity = delay_intensity
self.delay_type = delay_type
self.slow_worker_1 = slow_worker_1
self.dataset_name = dataset_name
self.logger.debug(
f"{self.worker_name} is working on a dataset of size {len(train_loader.sampler)}"
)
self.progress_bar = tqdm(
position=int(self.worker_name.split("_")[1]) - 1,
desc=f"{self.worker_name}",
unit="batch",
total=len(self.train_loader) * self.epochs,
leave=True,
)
def get_next_batch_async(self):
for epoch in range(self.epochs):
self.current_epoch = epoch + 1
current_lr = self.ps_rref.rpc_sync().get_current_lr_async()
self.progress_bar.set_postfix(
epoch=f"{self.current_epoch}/{self.epochs}", lr=f"{current_lr:.5f}"
)
for inputs, labels in self.train_loader:
yield inputs, labels
self.progress_bar.clear()
self.progress_bar.close()
def train_async(self):
worker_model = self.ps_rref.rpc_sync().get_model_async(self.worker_name)
for inputs, labels in self.get_next_batch_async():
loss = self.loss_func(worker_model(inputs), labels)
loss.backward()
self.batch_count += 1
if self.worker_name == "Worker_1" and self.slow_worker_1:
_delay(
intensity=self.delay_intensity, _type=self.delay_type, worker_1=True
)
elif self.delay:
_delay(
intensity=self.delay_intensity,
_type=self.delay_type,
worker_1=False,
)
# in asynchronous we send the parameters to the server asynchronously and then we update the worker model synchronously
rpc.rpc_async(
self.ps_rref.owner(),
ParameterServer_async.update_and_fetch_model_async,
args=(
self.ps_rref,
[param.grad for param in worker_model.parameters()],
self.worker_name,
self.batch_count,
self.current_epoch,
len(self.train_loader),
self.epochs,
loss.detach(),
),
)
worker_model = self.ps_rref.rpc_sync().get_model_async(self.worker_name)
self.progress_bar.update(1)
#################################### GLOBAL FUNCTIONS ####################################
def run_worker_async(
ps_rref,
logger,
train_loader,
epochs,
delay,
delay_intensity,
delay_type,
slow_worker_1,
dataset_name=None,
):
worker = Worker_async(
ps_rref,
logger,
train_loader,
epochs,
delay,
delay_intensity,
delay_type,
slow_worker_1,
dataset_name,
)
worker.train_async()
def run_parameter_server_async(
workers,
logger,
dataset_name,
split_dataset,
split_labels,
split_labels_unscaled,
learning_rate,
momentum,
train_split,
batch_size,
epochs,
seed,
model_accuracy,
save_model,
subfolder,
use_alr,
saves_per_epoch,
lrs,
delay,
delay_intensity,
delay_type,
slow_worker_1,
val,
alt_model,
compensation,
):
if seed:
set_seeds()
train_loaders, batch_size = create_worker_trainloaders(
dataset_name,
train_split,
batch_size,
model_accuracy,
len(workers),
split_dataset,
split_labels,
split_labels_unscaled,
validation=val,
)
train_loader_full = None
if model_accuracy:
train_loader_full = train_loaders[1]
train_loaders = train_loaders[0]
if val:
train_loader = train_loaders[0]
val_loader = train_loaders[1]
ps_rref = rpc.RRef(
ParameterServer_async(
len(workers),
logger,
dataset_name,
learning_rate,
momentum,
seed,
use_alr,
len(train_loader),
epochs,
lrs,
saves_per_epoch,
val,
alt_model,
train_loader=train_loader,
val_loader=val_loader,
compensation=compensation,
)
)
else:
train_loader = train_loaders
if split_dataset or split_labels:
len_train_loader = len(train_loader[0])
elif split_labels_unscaled:
len_train_loader = np.ceil(
len(train_loader[0].dataset) / len(workers) / batch_size
)
else:
len_train_loader = len(train_loader)
ps_rref = rpc.RRef(
ParameterServer_async(
len(workers),
logger,
dataset_name,
learning_rate,
momentum,
seed,
use_alr,
len_train_loader,
epochs,
lrs,
saves_per_epoch,
val,
alt_model,
compensation,
)
)
futs = []
logger.info(f"Starting asynchronous SGD training with {len(workers)} workers")
if (
not split_dataset and not split_labels and not split_labels_unscaled
): # workers sharing samples
for idx, worker in enumerate(workers):
futs.append(
rpc.rpc_async(
worker,
run_worker_async,
args=(
ps_rref,
logger,
train_loader,
epochs,
delay,
delay_intensity,
delay_type,
slow_worker_1,
),
)
)
else:
for idx, worker in enumerate(workers):
futs.append(
rpc.rpc_async(
worker,
run_worker_async,
args=(
ps_rref,
logger,
train_loader[idx],
epochs,
delay,
delay_intensity,
delay_type,
slow_worker_1,
dataset_name,
),
)
)
torch.futures.wait_all(futs)
logger.info("Finished training")
print(f"Final train loss: {ps_rref.to_here().loss}")
if model_accuracy:
(
final_train_accuracy,
correct_predictions,
total_preidctions,
) = compute_accuracy_loss(ps_rref.to_here().model, train_loader_full, LOSS_FUNC)
print(
f"Final train accuracy: {final_train_accuracy*100} % ({correct_predictions}/{total_preidctions})"
)
base_name = get_base_name(
"async",
dataset_name,
len(workers) + 1,
train_split,
learning_rate,
momentum,
batch_size,
epochs,
val,
use_alr,
lrs,
saves_per_epoch,
alt_model=alt_model,
split_dataset=split_dataset,
split_labels=split_labels,
split_labels_unscaled=split_labels_unscaled,
delay=delay,
slow_worker_1=slow_worker_1,
delay_intensity=delay_intensity,
delay_type=delay_type,
compensation=compensation,
)
if save_model:
_save_model(
base_name,
subfolder,
ps_rref.to_here().model,
)
if saves_per_epoch is not None:
save_weights(
base_name,
subfolder,
ps_rref.to_here().weights_matrix,
)
#################################### MAIN ####################################
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Asynchronous Parallel SGD parameter-Server RPC based training"
)
args = read_parser(parser, "async")
start(args, "async", run_parameter_server_async)