-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_train.py
192 lines (169 loc) · 5.2 KB
/
nn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
from tqdm import tqdm
import numpy as np
from common import (
create_worker_trainloaders,
setup_simple_logger,
_get_model,
get_optimizer,
get_scheduler,
compute_accuracy_loss,
get_base_name,
_save_model,
save_weights,
compute_weights_l2_norm,
read_parser,
LOSS_FUNC,
)
def run(
dataset_name,
learning_rate,
momentum,
train_split,
batch_size,
epochs,
model_accuracy,
save_model,
subfolder,
saves_per_epoch,
use_alr,
lrs,
val,
alt_model,
):
loss_func = LOSS_FUNC
model = _get_model(dataset_name, loss_func, alt_model)
optimizer = get_optimizer(model, learning_rate, momentum, use_alr)
train_loaders, batch_size = create_worker_trainloaders(
dataset_name,
train_split,
batch_size,
model_accuracy,
validation=val,
)
train_loader_full = None
if model_accuracy:
train_loader_full = train_loaders[1]
train_loaders = train_loaders[0]
if val:
train_loader = train_loaders[0]
val_loader = train_loaders[1]
else:
train_loader = train_loaders
scheduler = get_scheduler(lrs, optimizer, len(train_loader), epochs)
base_name = get_base_name(
"classic",
dataset_name,
0,
train_split,
learning_rate,
momentum,
batch_size,
epochs,
val,
use_alr,
lrs,
saves_per_epoch,
alt_model=alt_model,
)
logger = setup_simple_logger(subfolder, base_name)
logger.info("Start non distributed SGD training")
if saves_per_epoch is not None:
weights_matrix = []
weights = np.concatenate(
[
w.detach().clone().cpu().numpy().ravel()
for w in model.state_dict().values()
]
)
weights_matrix.append(weights)
save_idx = np.linspace(0, len(train_loader) - 1, saves_per_epoch, dtype=int)
unique_idx = set(save_idx)
if len(unique_idx) < saves_per_epoch:
save_idx = np.array(sorted(unique_idx))
last_loss = None
for epoch in range(epochs):
progress_bar = tqdm(
total=len(train_loader),
unit="batch",
)
progress_bar.set_postfix(
epoch=f"{epoch+1}/{epochs}", lr=f"{optimizer.param_groups[0]['lr']:.5f}"
)
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = loss_func(output, target)
loss.backward()
optimizer.step()
logger.debug(
f"Loss: {loss.item()}, weight norm: {compute_weights_l2_norm(model)}, batch: {batch_idx+1}/{len(train_loader)} ({batch_idx+1 + len(train_loader)*epoch}/{len(train_loader)*epochs}), epoch: {epoch+1}/{epochs}"
)
if saves_per_epoch is not None:
if batch_idx in save_idx:
weights = np.concatenate(
[
w.detach().clone().cpu().numpy().ravel()
for w in model.state_dict().values()
]
)
weights_matrix.append(weights)
progress_bar.update(1)
progress_bar.close()
if val:
train_acc, train_corr, train_tot, train_loss = compute_accuracy_loss(
model, train_loader, LOSS_FUNC, return_loss=True
)
val_acc, val_corr, val_tot, val_loss = compute_accuracy_loss(
model, val_loader, LOSS_FUNC, return_loss=True
)
logger.debug(
f"Train loss: {train_loss}, train accuracy: {train_acc*100} % ({train_corr}/{train_tot}), val loss: {val_loss}, val accuracy: {val_acc*100} % ({val_corr}/{val_tot}), epoch: {epoch+1}/{epochs}"
)
if scheduler is not None:
scheduler.step()
last_loss = loss.item()
progress_bar.close()
logger.info("Finished training")
print(f"Final train loss: {last_loss}")
if model_accuracy:
(
final_train_accuracy,
correct_predictions,
total_predictions,
) = compute_accuracy_loss(model, train_loader_full, LOSS_FUNC)
print(
f"Final train accuracy: {final_train_accuracy*100} % ({correct_predictions}/{total_predictions})"
)
if save_model:
_save_model(
base_name,
subfolder,
model,
)
if saves_per_epoch is not None:
save_weights(
base_name,
subfolder,
weights_matrix,
)
#################################### MAIN ####################################
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Non distributed SGD training")
args = read_parser(parser)
run(
args.dataset,
args.lr,
args.momentum,
args.train_split,
args.batch_size,
args.epochs,
args.model_accuracy,
not args.no_save_model,
args.subfolder,
args.saves_per_epoch,
args.alr,
args.lrs,
args.val,
args.alt_model,
)