-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model.py
507 lines (451 loc) · 19.5 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import argparse
import torch
from sklearn.metrics import classification_report as CR
from datetime import datetime, timedelta
from matplotlib.ticker import FuncFormatter
import matplotlib.pyplot as plt
import contextlib
import os
import numpy as np
import sys
from common import (
_get_model,
create_testloader,
create_trainloader,
compute_accuracy_loss,
LOSS_FUNC,
)
DEFAULT_BATCH_SIZE = 500
class Tee:
def __init__(self, file):
self.file = file
self.stdout = sys.stdout
def write(self, data):
self.stdout.write(data)
self.file.write(data)
def flush(self):
self.stdout.flush()
self.file.flush()
@contextlib.contextmanager
def redirect_stdout_to_file(file):
sys.stdout = Tee(file)
try:
yield
finally:
sys.stdout = sys.__stdout__
def performance(model_path, model, batch_size, classification_report, test=True):
mode = "test" if test else "train"
print(f"{mode.capitalize()} Performance")
loader = (
create_testloader(model_path, batch_size)
if test
else create_trainloader(model_path, batch_size)
)
(
average_accuracy,
correct_predictions,
total_predictions,
average_loss,
targets,
predictions,
) = compute_accuracy_loss(model, loader, LOSS_FUNC, test_mode=True)
print(
f"Average {mode} accuracy: {average_accuracy*100:.2f} % ({correct_predictions}/{total_predictions})"
)
print(f"Average {mode} loss: {average_loss:.4f}")
if classification_report:
report = CR(targets, predictions, zero_division=0)
print(f"\nClassification {mode} report:")
print(report)
def format_timedelta(x, _):
td = timedelta(seconds=x)
minutes, remainder = divmod(td.seconds, 60)
seconds = remainder
milliseconds = td.microseconds // 1000
return f"{minutes:02d}:{seconds:02d}:{milliseconds:03d}"
def save_fig(fig, subfolder, model_path, validation=False):
model_filename = os.path.basename(model_path)
model_basename, _ = os.path.splitext(model_filename)
if validation == False:
save_name = f"{model_basename}_training_plots.png"
if len(subfolder) > 0:
output_file_path = os.path.join(subfolder, save_name)
plt.savefig(output_file_path, bbox_inches="tight")
plt.close(fig)
print(f"Saved fig at {output_file_path}")
else:
plt.savefig(save_name, bbox_inches="tight")
plt.close(fig)
print(f"Saved fig at {save_name}")
else:
save_name = f"{model_basename}_validation_plots.png"
if len(subfolder) > 0:
output_file_path = os.path.join(subfolder, save_name)
plt.savefig(output_file_path, bbox_inches="tight")
plt.close(fig)
print(f"Saved fig at {output_file_path}")
else:
plt.savefig(save_name, bbox_inches="tight")
plt.close(fig)
print(f"Saved fig at {save_name}")
def compute_training_time_and_pics(model_path, log_path, pics, subfolder):
if "classic" in model_path:
model_type = "Classic"
elif "async" in model_path:
model_type = "Asynchronous"
elif "sync" in model_path:
model_type = "Synchronous"
else:
print("Unrecognized model path")
exit()
lines = []
with open(log_path, "r") as log_file:
for line in log_file:
lines.append(line.split(" - common - "))
for i, line in enumerate(lines):
timestamp = datetime.strptime(line[0], "%Y-%m-%d %H:%M:%S,%f")
lines[i][0] = timestamp
nb_workers = None
if model_type == "Synchronous" or model_type == "Asynchronous":
nb_workers = int((lines[0][1].split("with ")[1]).split(" workers")[0])
lines = [line for line in lines if "INFO" not in line[1]]
val_lines = None
val_lines = [line for line in lines if "Train loss:" in line[1]]
lines = [line for line in lines if "Train loss:" not in line[1]]
if model_type == "Synchronous" or model_type == "Asynchronous":
lines = lines[nb_workers:]
start_time = lines[0][0]
end_time = lines[-1][0]
training_time = end_time - start_time
minutes, remainder = divmod(training_time.seconds, 60)
seconds = remainder
milliseconds = training_time.microseconds // 1000
formatted_training_time = f"{minutes:02d}:{seconds:02d}:{milliseconds:03d}"
print(f"{model_type} training time:", formatted_training_time) # MM:SS:sss
if pics:
for i, line in enumerate(lines):
lines[i][0] = line[0] - start_time
lines[i][1] = line[1].split("DEBUG - ")[1].strip()
if model_type == "Classic":
model_update_lines = []
for line in lines:
splited_text = line[1].split(",")
model_update_lines.append(
(
line[0],
float(splited_text[0].split(" ")[1]),
float(splited_text[1].split(" ")[-1]),
int(splited_text[2].split(" ")[3][1:-1].split("/")[0]),
int(splited_text[3].split(" ")[-1].split("/")[0]),
)
)
####### PLOTS #######
# Create a 1x3 grid of subplots
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(26, 5))
# First subplot (Model Loss vs Time)
timedeltas = [line[0].total_seconds() for line in model_update_lines]
losses = [line[1] for line in model_update_lines]
axs[0].plot(timedeltas, losses)
axs[0].set_xlabel("Time (MM:SS:sss)")
axs[0].set_ylabel("Model Loss")
axs[0].set_title(
"Classic SGD evolution of the model loss in function of time"
)
# Format x-axis tick labels
formatter = FuncFormatter(format_timedelta)
axs[0].xaxis.set_major_formatter(formatter)
# Second subplot (Weights L2 norm vs Time)
weights_norm = [line[2] for line in model_update_lines]
axs[1].plot(timedeltas, weights_norm)
axs[1].set_xlabel("Time (MM:SS:sss)")
axs[1].set_ylabel("Weights L2 norm")
axs[1].set_title(
"Classic SGD evolution of the model weights L2 norm in function of time"
)
axs[1].xaxis.set_major_formatter(formatter)
# Thirst subplot (Cumulative Batch Update Count vs Time)
batches = [line[3] for line in model_update_lines]
axs[2].plot(timedeltas, batches)
axs[2].set_xlabel("Time (MM:SS:sss)")
axs[2].set_ylabel("Cumulative Batch Update Count")
axs[2].set_title("Classic SGD computation speed")
axs[2].xaxis.set_major_formatter(formatter)
save_fig(fig, subfolder, model_path)
elif model_type == "Synchronous":
model_loss_lines = []
worker_update_lines = []
for i, line in enumerate(lines):
if "PS updated model, " in line[1]:
# timedetla, model loss
model_loss_lines.append(
(
line[0],
float(line[1].split(",")[1].split(" ")[-1]),
float(line[1].split(",")[2].split(" ")[-1]),
)
)
elif "PS got " in line[1]:
splited_text = (line[1].split("from ")[1]).split(" ")
# timedelta, worker id, batch count, epoch
worker_update_lines.append(
(
line[0],
int(splited_text[0].split("_")[1][:-1]),
int(splited_text[2].split("/")[0][1:]),
int(splited_text[-1].split("/")[0]),
)
)
####### PLOTS #######
# Create a 1x3 grid of subplots
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(26, 5))
# First subplot (Model Loss vs Time)
timedeltas = [line[0].total_seconds() for line in model_loss_lines]
losses = [line[1] for line in model_loss_lines]
axs[0].plot(timedeltas, losses)
axs[0].set_xlabel("Time (MM:SS:sss)")
axs[0].set_ylabel("Model Loss")
axs[0].set_title(
"Synchronous SGD evolution of the model loss in function of time"
)
formatter = FuncFormatter(format_timedelta)
axs[0].xaxis.set_major_formatter(formatter)
# Second subplot (Weights L2 norm vs Time)
weights_norm = [line[2] for line in model_loss_lines]
axs[1].plot(timedeltas, weights_norm)
axs[1].set_xlabel("Time (MM:SS:sss)")
axs[1].set_ylabel("Weights L2 norm")
axs[1].set_title(
"Synchronous SGD evolution of the model weights L2 norm in function of time"
)
formatter = FuncFormatter(format_timedelta)
axs[1].xaxis.set_major_formatter(formatter)
# Third subplot (Cumulative Batch Update Count vs Time)
worker_cumulative_updates = {}
for line in worker_update_lines:
td, worker_id, batch_count, epoch = line
worker_cumulative_updates.setdefault(worker_id, []).append(
(td, batch_count)
)
for worker_id, updates in worker_cumulative_updates.items():
x = [td.total_seconds() for td, _ in updates]
y = [batch_count for _, batch_count in updates]
axs[2].plot(x, y, label=f"Worker {worker_id}")
axs[2].set_xlabel("Time (MM:SS:sss)")
axs[2].set_ylabel("Cumulative Batch Update Count")
axs[2].set_title("Synchronous SGD workers speed comparison")
axs[2].legend()
axs[2].xaxis.set_major_formatter(formatter)
save_fig(fig, subfolder, model_path)
elif model_type == "Asynchronous":
worker_update_lines = []
for i, line in enumerate(lines):
if "PS updated model, worker loss: " in line[1]:
splited_text = (line[1].split("PS updated model, worker loss: "))[
1
].split(" ")
worker_update_lines.append(
(
line[0],
float(splited_text[0]),
float(splited_text[-1]),
int(splited_text[1].split("_")[1].split(")")[0]),
)
)
####### PLOTS #######
# Create a 1x3 grid of subplots
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(26, 5))
# First subplot (Worker Loss vs Time)
worker_losses = {}
for line in worker_update_lines:
td, worker_loss, _, worker_id = line
worker_losses.setdefault(worker_id, []).append((td, worker_loss))
for worker_id, losses in worker_losses.items():
x = [td.total_seconds() for td, _ in losses]
y = [worker_loss for _, worker_loss in losses]
axs[0].plot(x, y, label=f"Worker {worker_id}")
axs[0].set_xlabel("Time (MM:SS:sss)")
axs[0].set_ylabel("Worker Loss")
axs[0].set_title(
"Asynchronous SGD evolution of worker loss in function of time"
)
axs[0].legend()
formatter = FuncFormatter(format_timedelta)
axs[0].xaxis.set_major_formatter(formatter)
# Second subplot (Weigh L2 norm vs Time)
weights_norms = {}
for line in worker_update_lines:
td, _, worker_w_norm, worker_id = line
weights_norms.setdefault(worker_id, []).append((td, worker_w_norm))
for worker_id, weight_norm in weights_norms.items():
x = [td.total_seconds() for td, _ in weight_norm]
y = [w_norm for _, w_norm in weight_norm]
axs[1].plot(x, y, label=f"Worker {worker_id}")
axs[1].set_xlabel("Time (MM:SS:sss)")
axs[1].set_ylabel("Weights L2 norm")
axs[1].set_title(
"Asynchronous SGD evolution of the weights L2 norm in function of time"
)
axs[1].legend()
formatter = FuncFormatter(format_timedelta)
axs[1].xaxis.set_major_formatter(formatter)
# Third subplot (Cumulative Batch Update Count vs Time)
worker_cumulative_updates = {}
for line in worker_update_lines:
td, _, _, worker_id = line
worker_cumulative_updates.setdefault(worker_id, []).append(td)
for worker_id, updates in worker_cumulative_updates.items():
x = [td.total_seconds() for td in updates]
y = list(range(1, len(updates) + 1))
axs[2].plot(x, y, label=f"Worker {worker_id}")
axs[2].set_xlabel("Time (MM:SS:sss)")
axs[2].set_ylabel("Cumulative Batch Update Count")
axs[2].set_title("Asynchronous SGD workers speed comparison")
axs[2].legend()
# Format x-axis tick labels
axs[2].xaxis.set_major_formatter(formatter)
save_fig(fig, subfolder, model_path)
if val_lines is not None:
if len(val_lines) > 0:
time_offset = val_lines[0][0]
for idx, v_line in enumerate(val_lines):
splited_text = v_line[1].split(", ")
val_lines[idx] = (
v_line[0] - time_offset,
float(splited_text[0].split("Train loss: ")[-1]), # train loss
float(
splited_text[1].split("train accuracy: ")[1].split(" ")[0]
), # train accuracy
float(splited_text[2].split("val loss: ")[-1]), # val loss
float(
splited_text[3].split("val accuracy: ")[1].split(" ")[0]
), # val accuracy
)
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(20, 5))
timedeltas = [line[0].total_seconds() for line in val_lines]
tr_losses = [line[1] for line in val_lines]
tr_acc = [line[2] for line in val_lines]
val_losses = [line[3] for line in val_lines]
val_acc = [line[4] for line in val_lines]
epochs = list(range(1, len(val_lines) + 1))
epoch_opt = np.argmin(val_losses) + 1
print(f"The early stopping epoch is epoch {epoch_opt}")
# First subplot (Model Loss vs Epoch)
axs[0].plot(epochs, tr_losses, marker="x", label="Training")
axs[0].plot(epochs, val_losses, marker="x", label="Validation")
axs[0].axvline(
epoch_opt, color="k", linestyle="--", label="Early Stopping Point"
)
if model_type == "Asynchronous":
axs[0].set_xlabel("Pseudo Epochs")
else:
axs[0].set_xlabel("Epochs")
axs[0].set_ylabel("Loss")
axs[0].set_title(
f"{model_type} SGD evolution of the train and validation loss in function of epoch"
)
axs[0].legend()
# Second subplot (Weights L2 norm vs Epoch)
axs[1].plot(epochs, tr_acc, marker="x", label="Training")
axs[1].plot(epochs, val_acc, marker="x", label="Validation")
axs[1].axvline(
epoch_opt, color="k", linestyle="--", label="Early Stopping Point"
)
if model_type == "Asynchronous":
axs[1].set_xlabel("Pseudo Epochs")
else:
axs[1].set_xlabel("Epochs")
axs[1].set_ylabel("Accuracy")
axs[1].set_title(
f"{model_type} SGD evolution of the train and validation loss in function of epoch"
)
axs[1].legend()
save_fig(fig, subfolder, model_path, validation=True)
def main(
model_path,
log_path,
batch_size,
classification_report,
training_time,
pics,
subfolder,
):
# Load the saved model
if "alt_model" in model_path:
model = _get_model(model_path, LOSS_FUNC, alt_model=True)
else:
model = _get_model(model_path, LOSS_FUNC, alt_model=False)
model.load_state_dict(torch.load(model_path))
model_filename = os.path.basename(model_path)
model_basename, _ = os.path.splitext(model_filename)
if len(subfolder) > 0:
if not os.path.exists(subfolder):
os.makedirs(subfolder)
output_file_path = os.path.join(
subfolder, f"{model_basename}_test_performance.txt"
)
else:
output_file_path = f"{model_basename}_test_performance.txt"
print(f"Saving to outputs to {output_file_path}")
with open(output_file_path, "w") as output_file:
with redirect_stdout_to_file(output_file):
print(f"Testing performance of {model_path}")
if training_time:
compute_training_time_and_pics(model_path, log_path, pics, subfolder)
performance(
model_path, model, batch_size, classification_report, test=False
)
performance(model_path, model, batch_size, classification_report, test=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Computing train and test performance and generating plots"
)
parser.add_argument(
"--batch_size",
type=int,
default=None,
help="""Batch size of Mini batch SGD [1,len(train set)].""",
)
parser.add_argument("model_path", type=str, help="""Path of the model.""")
parser.add_argument("log_path", type=str, help="""Path of the log file.""")
parser.add_argument(
"--classification_report",
action="store_true",
help="""If set, prints a classification report (labels performance).""",
)
parser.add_argument(
"--training_time",
action="store_true",
help="""If set, will read the associated log file to compute the training time.""",
)
parser.add_argument(
"--pics",
action="store_true",
help="""If set, will compute and save plots from the .log file. Requires --training_time.""",
)
parser.add_argument(
"--subfolder",
type=str,
default="",
help="""Subfolder name where the test results and plots will be saved.""",
)
args = parser.parse_args()
if args.batch_size is None:
args.batch_size = DEFAULT_BATCH_SIZE
print(f"\nUsing default batch_size: {DEFAULT_BATCH_SIZE}")
elif args.batch_size < 1:
print("Forbidden value !!! batch_size must be between [1,len(train set)]")
exit()
if args.pics and not args.training_time:
print("Pictures mode only with --training_time")
exit()
if len(args.subfolder) > 0:
print(f"Outputs will be saved to {args.subfolder}/")
main(
args.model_path,
args.log_path,
args.batch_size,
args.classification_report,
args.training_time,
args.pics,
args.subfolder,
)