diff --git a/Chaps/Chap3.tex b/Chaps/Chap3.tex index 5d49f4e..42cadd4 100644 --- a/Chaps/Chap3.tex +++ b/Chaps/Chap3.tex @@ -1161,7 +1161,7 @@ \subsection{闭壳层H-F:限制性自旋轨道}\label{sec3.4.1} 那么 \begin{alignat}{3} f(\mathbf{r}_1)\psi_j(\mathbf{r}_1) &= h(\mathbf{r}_1)\psi_j(\mathbf{r}_1) &+ \sum_c\int\dd\omega_1\dd{x}_2\,\alpha^*(\omega_1)\chi_c^*(\mathbf{x}_1)\twoe\chi_c(\mathbf{x}_2)\alpha(\omega_1)\psi_j(\mathbf{r}_1)\notag\\ - &&-\sum_c\int\dd\omega_1\dd{x}_2\,\alpha^*(\omega_1)\chi_c^*(\mathbf{x}_1)\twoe\chi_c(\mathbf{x}_1)\alpha(\omega_2)\psi_j(\mathbf{r}_2)\notag\\ + &&-\sum_c\int\dd\omega_1\dd{x}_2\,\alpha^*(\omega_1)\chi_c^*(\mathbf{x}_2)\twoe\chi_c(\mathbf{x}_1)\alpha(\omega_2)\psi_j(\mathbf{r}_2)\notag\\ &=\epsilon_j\psi_j(\mathbf{r}_1)& \end{alignat} 式中含$h(\mathbf{r}_1)$的那项中$\dd\omega_1$的积分已经预先积完, @@ -1178,13 +1178,13 @@ \subsection{闭壳层H-F:限制性自旋轨道}\label{sec3.4.1} & {}\quad + \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\alpha^*(\omega_2)\twoe\psi_c(\mathbf{r}_2)\alpha(\omega_2)\alpha(\omega_1)\psi_j(\mathbf{r}_1)\notag\\ & {}\quad + \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\beta^*(\omega_2)\twoe\psi_c(\mathbf{r}_2)\beta(\omega_2)\alpha(\omega_1)\psi_j(\mathbf{r}_1)\notag\\ & {}\quad - \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\alpha^*(\omega_2)\twoe\psi_c(\mathbf{r}_1)\alpha(\omega_1)\alpha(\omega_2)\psi_j(\mathbf{r}_2)\notag\\ - & {}\quad - \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\beta^*(\omega_2)\twoe\psi_c(\mathbf{r}_2)\beta(\omega_1)\alpha(\omega_2)\psi_j(\mathbf{r}_1)\notag\\ + & {}\quad - \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\beta^*(\omega_2)\twoe\psi_c(\mathbf{r}_1)\beta(\omega_1)\alpha(\omega_2)\psi_j(\mathbf{r}_1)\notag\\ & = \epsilon_j\psi_j(\mathbf{r}_1) \label{3.120} \end{align} 现在可以进行对$\dd\omega_1$和$\dd\omega_2$的积分. \autoref{3.120}中最后一项根据自旋正交性为零. -这反映自旋平行电子之间没有交换作用的事实. +这反映自旋反平行电子之间没有交换作用的事实. 两个库伦项是相等的, 那么可得 \begin{alignat}{3}