Skip to content

Latest commit

 

History

History
72 lines (49 loc) · 3.37 KB

README.md

File metadata and controls

72 lines (49 loc) · 3.37 KB

docs Downloads Downloads

Code Style: Blue Aqua QA JET

HarmonicBalance.jl is a Julia package for solving periodic differential equations using the method of harmonic balance.

Installation

To install HarmonicBalance.jl, you can use the github repo or the Julia package manager,

using Pkg
Pkg.add("HarmonicBalance")

Documentation

For a detailed description of the package and examples, see the documentation.

This repo contains a collection of example notebooks.

Let's find the steady states of a driven Duffing oscillator with nonlinear damping, its equation of motion is:

using HarmonicBalance
@variables α ω ω0 F η t x(t) # declare constant variables and a function x(t)
diff_eq = DifferentialEquation(d(x,t,2) + ω0^2*x + α*x^3 + η*d(x,t)*x^2 ~ F*cos*t), x)
add_harmonic!(diff_eq, x, ω) # specify the ansatz x = u(T) cos(ωt) + v(T) sin(ωt)

# implement ansatz to get harmonic equations
harmonic_eq = get_harmonic_equations(diff_eq)

# solve for a range of ω
result = get_steady_states(harmonic_eq, ω => range(0.9, 1.2, 100), (α => 1., ω0 => 1.0, F => 0.01, η => 0.1))
A steady state result for 100 parameter points

Solution branches:   3
   of which real:    3
   of which stable:  2

Classes: stable, physical, Hopf, binary_labels
plot(result, "sqrt(u1^2 + v1^2)")

Citation

If you use HarmonicBalance.jl in your project, we kindly ask you to cite this paper, namely:

HarmonicBalance.jl: A Julia suite for nonlinear dynamics using harmonic balance Jan Košata, Javier del Pino, Toni L. Heugel, Oded Zilberberg SciPost Phys. Codebases 6 (2022)

Similar software

  • JosephsonCircuits.jl: Performs the frequency domain behaviour with a similar Harmonic Balance method for nonlinear circuits containing Josephson junctions, capacitors, inductors, mutual inductors, and resistors.
  • Manlab: A similar package in Matlab also using continuation methods and using the Harmonic Balance method for periodic orbits.