Skip to content
/ ultralytics Public template
forked from ultralytics/ultralytics

NEW - YOLOv8 ๐Ÿš€ in PyTorch > ONNX > CoreML > TFLite

License

Notifications You must be signed in to change notification settings

Npiechaud/ultralytics

ย 
ย 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

English | ็ฎ€ไฝ“ไธญๆ–‡

Ultralytics CI YOLOv8 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle

Ultralytics YOLOv8, developed by Ultralytics, is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.

To request an Enterprise License please complete the form at Ultralytics Licensing.

Documentation

See below for a quickstart installation and usage example, and see the YOLOv8 Docs for full documentation on training, validation, prediction and deployment.

Install

Pip install the ultralytics package including all requirements in a Python>=3.7 environment with PyTorch>=1.7.

pip install ultralytics
Usage

CLI

YOLOv8 may be used directly in the Command Line Interface (CLI) with a yolo command:

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

yolo can be used for a variety of tasks and modes and accepts additional arguments, i.e. imgsz=640. See the YOLOv8 CLI Docs for examples.

Python

YOLOv8 may also be used directly in a Python environment, and accepts the same arguments as in the CLI example above:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from scratch
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

# Use the model
model.train(data="coco128.yaml", epochs=3)  # train the model
metrics = model.val()  # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
success = model.export(format="onnx")  # export the model to ONNX format

Models download automatically from the latest Ultralytics release. See YOLOv8 Python Docs for more examples.

Models

All YOLOv8 pretrained models are available here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.

Models download automatically from the latest Ultralytics release on first use.

Detection

See Detection Docs for usage examples with these models.

Model size
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by yolo val detect data=coco.yaml device=0
  • Speed averaged over COCO val images using an Amazon EC2 P4d instance.
    Reproduce by yolo val detect data=coco128.yaml batch=1 device=0|cpu
Segmentation

See Segmentation Docs for usage examples with these models.

Model size
(pixels)
mAPbox
50-95
mAPmask
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-seg 640 36.7 30.5 96.1 1.21 3.4 12.6
YOLOv8s-seg 640 44.6 36.8 155.7 1.47 11.8 42.6
YOLOv8m-seg 640 49.9 40.8 317.0 2.18 27.3 110.2
YOLOv8l-seg 640 52.3 42.6 572.4 2.79 46.0 220.5
YOLOv8x-seg 640 53.4 43.4 712.1 4.02 71.8 344.1
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by yolo val segment data=coco.yaml device=0
  • Speed averaged over COCO val images using an Amazon EC2 P4d instance.
    Reproduce by yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu
Classification

See Classification Docs for usage examples with these models.

Model size
(pixels)
acc
top1
acc
top5
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B) at 640
YOLOv8n-cls 224 66.6 87.0 12.9 0.31 2.7 4.3
YOLOv8s-cls 224 72.3 91.1 23.4 0.35 6.4 13.5
YOLOv8m-cls 224 76.4 93.2 85.4 0.62 17.0 42.7
YOLOv8l-cls 224 78.0 94.1 163.0 0.87 37.5 99.7
YOLOv8x-cls 224 78.4 94.3 232.0 1.01 57.4 154.8
  • acc values are model accuracies on the ImageNet dataset validation set.
    Reproduce by yolo val classify data=path/to/ImageNet device=0
  • Speed averaged over ImageNet val images using an Amazon EC2 P4d instance.
    Reproduce by yolo val classify data=path/to/ImageNet batch=1 device=0|cpu

Integrations




Roboflow ClearML โญ NEW Comet โญ NEW Neural Magic โญ NEW
Label and export your custom datasets directly to YOLOv8 for training with Roboflow Automatically track, visualize and even remotely train YOLOv8 using ClearML (open-source!) Free forever, Comet lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions Run YOLOv8 inference up to 6x faster with Neural Magic DeepSparse

Ultralytics HUB

Experience seamless AI with Ultralytics HUB โญ, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 (coming soon) ๐Ÿš€ model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly Ultralytics App. Start your journey for Free now!

Contribute

We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our Contributing Guide to get started, and fill out our Survey to send us feedback on your experience. Thank you ๐Ÿ™ to all our contributors!

License

YOLOv8 is available under two different licenses:

  • GPL-3.0 License: See LICENSE file for details.
  • Enterprise License: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at Ultralytics Licensing.

Contact

For YOLOv8 bug reports and feature requests please visit GitHub Issues or the Ultralytics Community Forum.


About

NEW - YOLOv8 ๐Ÿš€ in PyTorch > ONNX > CoreML > TFLite

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.1%
  • Other 0.9%