@@ -98,9 +98,9 @@ def datetime2dataframe(self, datetime_list):
98
98
99
99
if isinstance (datetime_list , list ):
100
100
101
- result = pd .DataFrame (datetime_list , columns = ["LocalDateTime " ])
101
+ result = pd .DataFrame (datetime_list , columns = ["valuedatetime " ])
102
102
103
- result .set_index ("LocalDateTime " , inplace = True )
103
+ result .set_index ("valuedatetime " , inplace = True )
104
104
105
105
return result
106
106
@@ -130,10 +130,10 @@ def filter_value(self, value, ops):
130
130
df = self ._test_filter_previous ()
131
131
132
132
if ops == '>' :
133
- self .filtered_dataframe = df [df ['DataValue ' ] > value ]
133
+ self .filtered_dataframe = df [df ['datavalue ' ] > value ]
134
134
135
135
if ops == '<' :
136
- self .filtered_dataframe = df [df ['DataValue ' ] < value ]
136
+ self .filtered_dataframe = df [df ['datavalue ' ] < value ]
137
137
138
138
139
139
def filter_date (self , before , after ):
@@ -185,9 +185,9 @@ def change_value_threshold(self, value, operator):
185
185
186
186
# make a copy of the dataframe in order to modify it to be in the form we need to determine data gaps
187
187
copy_df = df
188
- copy_df ['values' ] = df ['DataValue ' ]
188
+ copy_df ['values' ] = df ['datavalue ' ]
189
189
copy_df ['diff' ] = copy_df ['values' ].shift ()
190
- copy_df ["diff_date" ] = copy_df ['LocalDateTime ' ].shift ()
190
+ copy_df ["diff_date" ] = copy_df ['valuedatetime ' ].shift ()
191
191
copy_df ['change_threshold' ] = abs (df ['values' ] - df ['diff' ])
192
192
193
193
if not isinstance (value , float ):
@@ -337,13 +337,13 @@ def interpolate(self):
337
337
df = self ._series_points_df
338
338
issel = df .index .isin (tmp_filter_list .index )
339
339
340
- mdf = df ["DataValue " ].mask (issel )
340
+ mdf = df ["datavalue " ].mask (issel )
341
341
mdf .interpolate (method = "time" , inplace = True )
342
- tmp_filter_list ["DataValue " ]= mdf [issel ]
342
+ tmp_filter_list ["datavalue " ]= mdf [issel ]
343
343
ids = tmp_filter_list .index .tolist ()
344
344
345
345
#update_list = [(row["DataValue"], row["ValueID"]) for index, row in tmp_filter_list.iterrows()]
346
- update_list = [{"value" : row ["DataValue " ], "id" : index } for index , row in tmp_filter_list .iterrows ()]
346
+ update_list = [{"value" : row ["datavalue " ], "id" : index } for index , row in tmp_filter_list .iterrows ()]
347
347
348
348
self .memDB .update (update_list )
349
349
@@ -359,10 +359,10 @@ def drift_correction(self, gap_width):
359
359
x_l = (tmp_filter_list .index [- 1 ]- startdate ).total_seconds ()
360
360
361
361
# y_n = y_0 + G(x_i / x_l)
362
- f = lambda row : row ["DataValue " ]+ (gap_width * ((row .name - startdate ).total_seconds () / x_l ))
363
- tmp_filter_list ["DataValue " ]= tmp_filter_list .apply (f , axis = 1 )
362
+ f = lambda row : row ["datavalue " ]+ (gap_width * ((row .name - startdate ).total_seconds () / x_l ))
363
+ tmp_filter_list ["datavalue " ]= tmp_filter_list .apply (f , axis = 1 )
364
364
365
- update_list = [{"value" : row ["DataValue " ], "id" :index } for index , row in tmp_filter_list .iterrows ()]
365
+ update_list = [{"value" : row ["datavalue " ], "id" :index } for index , row in tmp_filter_list .iterrows ()]
366
366
367
367
ids = tmp_filter_list .index .tolist ()
368
368
self .memDB .update (update_list )
0 commit comments