-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
78 lines (60 loc) · 3.19 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from torch import nn
class Discriminator(nn.Module):
def __init__(self, n_channels: int, hidden_dim: int):
super(Discriminator, self).__init__()
self.disc = nn.Sequential(
self.make_disc_block(n_channels, hidden_dim, kernel_size=4, stride=2, padding=1),
self.make_disc_block(hidden_dim, hidden_dim * 2, kernel_size=4, stride=2, padding=1, normalize=True),
self.make_disc_block(hidden_dim * 2, hidden_dim * 4, kernel_size=4, stride=2, padding=1, normalize=True),
self.make_disc_block(hidden_dim * 4, hidden_dim * 8, kernel_size=4, stride=2, padding=1, normalize=True),
self.make_disc_block(hidden_dim * 8, hidden_dim * 16, kernel_size=4, stride=2, padding=1, normalize=True),
self.make_disc_block(hidden_dim * 16, 1, kernel_size=4, stride=1, padding=0, activation=nn.Sigmoid()),
)
@staticmethod
def make_disc_block(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int,
padding: int,
normalize: bool = False,
activation: nn.Module = nn.LeakyReLU(negative_slope=0.2, inplace=True)
) -> nn.Sequential:
layers = [nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=False)]
if normalize:
layers.append(nn.BatchNorm2d(out_channels))
layers.append(activation)
return nn.Sequential(*layers)
def forward(self, image):
disc_pred = self.disc(image)
return disc_pred.view(len(disc_pred), -1)
class Generator(nn.Module):
def __init__(self, n_channels: int, z_dim: int, hidden_dim: int):
super(Generator, self).__init__()
self.z_dim = z_dim
self.gen = nn.Sequential(
self.make_gen_block(z_dim, hidden_dim * 16, kernel_size=4, stride=1, padding=0, normalize=True),
self.make_gen_block(hidden_dim * 16, hidden_dim * 8, kernel_size=4, stride=2, padding=1, normalize=True),
self.make_gen_block(hidden_dim * 8, hidden_dim * 4, kernel_size=4, stride=2, padding=1, normalize=True),
self.make_gen_block(hidden_dim * 4, hidden_dim * 2, kernel_size=4, stride=2, padding=1, normalize=True),
self.make_gen_block(hidden_dim * 2, hidden_dim, kernel_size=4, stride=2, padding=1, normalize=True),
self.make_gen_block(hidden_dim, n_channels, kernel_size=4, stride=2, padding=1, activation=nn.Tanh()),
)
@staticmethod
def make_gen_block(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int,
padding: int,
normalize: bool = False,
activation: nn.Module = nn.ReLU(inplace=True)
) -> nn.Sequential:
layers = [nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=False)]
if normalize:
layers.append(nn.BatchNorm2d(out_channels))
layers.append(activation)
return nn.Sequential(*layers)
def forward(self, noise):
x = noise.view(len(noise), self.z_dim, 1, 1)
return self.gen(x)