We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
作者您好,感谢您的工作。 想请教您关于论文中4.4. Ablation Studies中Token Aggregation Function中,您的新的token聚合方式与Linear和Conv进行了对比,我具体在代码中SSA.py的 x_1 = self.act(self.norm1(self.sr1(x_).reshape(B, C, -1).permute(0, 2, 1))) x_2 = self.act(self.norm2(self.sr2(x_).reshape(B, C, -1).permute(0, 2, 1))) kv1 = self.kv1(x_1).reshape(B, -1, 2, self.num_heads//2, C // self.num_heads).permute(2, 0, 3, 1, 4) kv2 = self.kv2(x_2).reshape(B, -1, 2, self.num_heads//2, C // self.num_heads).permute(2, 0, 3, 1, 4) k1, v1 = kv1[0], kv1[1] # ( b, heads/2, hw/8*8, c/heads) k2, v2 = kv2[0], kv2[1] # ( b, heads/2, hw/4*4, c/heads)中看到您token聚合时也是用了Conv的方法,您文中的不同指的是您采用了多种尺度的聚合吗?
x_1 = self.act(self.norm1(self.sr1(x_).reshape(B, C, -1).permute(0, 2, 1))) x_2 = self.act(self.norm2(self.sr2(x_).reshape(B, C, -1).permute(0, 2, 1))) kv1 = self.kv1(x_1).reshape(B, -1, 2, self.num_heads//2, C // self.num_heads).permute(2, 0, 3, 1, 4) kv2 = self.kv2(x_2).reshape(B, -1, 2, self.num_heads//2, C // self.num_heads).permute(2, 0, 3, 1, 4) k1, v1 = kv1[0], kv1[1] # ( b, heads/2, hw/8*8, c/heads) k2, v2 = kv2[0], kv2[1] # ( b, heads/2, hw/4*4, c/heads)
The text was updated successfully, but these errors were encountered:
Sorry, something went wrong.
好的好的,明白了,感谢您的回复!
No branches or pull requests
作者您好,感谢您的工作。
想请教您关于论文中4.4. Ablation Studies中Token Aggregation Function中,您的新的token聚合方式与Linear和Conv进行了对比,我具体在代码中SSA.py的
x_1 = self.act(self.norm1(self.sr1(x_).reshape(B, C, -1).permute(0, 2, 1))) x_2 = self.act(self.norm2(self.sr2(x_).reshape(B, C, -1).permute(0, 2, 1))) kv1 = self.kv1(x_1).reshape(B, -1, 2, self.num_heads//2, C // self.num_heads).permute(2, 0, 3, 1, 4) kv2 = self.kv2(x_2).reshape(B, -1, 2, self.num_heads//2, C // self.num_heads).permute(2, 0, 3, 1, 4) k1, v1 = kv1[0], kv1[1] # ( b, heads/2, hw/8*8, c/heads) k2, v2 = kv2[0], kv2[1] # ( b, heads/2, hw/4*4, c/heads)
中看到您token聚合时也是用了Conv的方法,您文中的不同指的是您采用了多种尺度的聚合吗?The text was updated successfully, but these errors were encountered: