-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathrun.py
155 lines (131 loc) · 5.08 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import warnings
from sklearn import ensemble
# This ignore the scheduler warning, see https://github.com/Lightning-AI/lightning/issues/5558
warnings.filterwarnings("ignore", "Detected call of", UserWarning)
import os
import copy
import pytorch_lightning as pl
from CoTrain.config import ex
from CoTrain.modules import CoTrainTransformerSS, CLIP
from CoTrain.datamodules.video.multitask_datamodule import MTDataModule
import datetime
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.cloud_io import load as pl_load
import torch
import numpy as np
from pytorch_lightning.strategies import DDPStrategy
torch.manual_seed(0)
class CustomDDPStrategy(DDPStrategy):
def configure_ddp(self):
super().configure_ddp()
self._model._set_static_graph() # THIS IS THE MAGIC LINE
def deterministic_index_select(x, dim, indices):
"""
input_tensor: Tensor
dim: dim
indices: 1D tensor
"""
tensor_transpose = torch.transpose(x, 0, dim)
return tensor_transpose[indices].transpose(dim, 0)
@ex.automain
def main(_config):
_config = copy.deepcopy(_config)
pl.seed_everything(_config["seed"])
dm = MTDataModule(_config, dist=True)
if not _config["clip"]:
model = CoTrainTransformerSS(_config)
else:
model = CLIP(_config)
# assert False, [n for n, p in model.named_parameters() if p.requires_grad][:10]
exp_name = f'{_config["exp_name"]}'
os.makedirs(_config["log_dir"], exist_ok=True)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
save_top_k=_config["save_top_k"],
# every_n_epochs=_config["save_checkpoints_interval"],
every_n_train_steps=_config["val_check_interval"],
verbose=True,
monitor="contrastive/train/loss",
mode="min",
save_last=_config["save_last"],
dirpath=_config["model_dir"],
)
now = datetime.datetime.now()
if not isinstance(_config["load_path"], str):
instance_name = f'{exp_name}_seed{_config["seed"]}_from_multiple'
else:
instance_name = f'{exp_name}_seed{_config["seed"]}_from_{"_".join(_config["load_path"].split("/")[-2:])[:-5]}'
logger = pl.loggers.TensorBoardLogger(
_config["log_dir"],
name=instance_name,
version="version_0",
)
lr_callback = pl.callbacks.LearningRateMonitor(logging_interval="step")
summary_callback = pl.callbacks.ModelSummary(max_depth=1)
callbacks = [checkpoint_callback, lr_callback, summary_callback]
num_gpus = (
_config["num_gpus"]
if isinstance(_config["num_gpus"], int)
else len(_config["num_gpus"])
)
# print all config at the begin
print('='*70+'Config: '+'='*70)
print(instance_name)
print(_config)
print('='*150)
# notice _config["batch_size"] should be max length for all machines, eg. at least 1024
grad_steps = _config["batch_size"] // (
_config["per_gpu_batchsize"] * num_gpus * _config["num_nodes"]
)
assert grad_steps > 0, (_config["batch_size"], _config["per_gpu_batchsize"])
if not _config["clip_use_checkpoint"]:
# assert not _config["clip_use_checkpoint"], "Do not use gradient accumulation and checkpoint at the same time"
if _config["loss_names"]["openend_vqa"] >= 1:
find_unused_paramters = True
else:
find_unused_paramters = False
strategy = DDPStrategy(find_unused_parameters=find_unused_paramters)
else:
assert grad_steps == 1
strategy = CustomDDPStrategy()
max_steps = _config["max_steps"] if _config["max_steps"] is not None else None
resume_ckpt = _config["resume_from"]
if max_steps == None:
max_steps = -1
trainer = pl.Trainer(
devices=_config["num_gpus"],
num_nodes=_config["num_nodes"],
precision=_config["precision"],
accelerator="gpu",
benchmark=True,
deterministic=False,
max_epochs=_config["max_epoch"] if max_steps == -1 else 100,
max_steps=max_steps,
callbacks=callbacks,
logger=logger,
# prepare_data_per_node=False,
replace_sampler_ddp=False,
accumulate_grad_batches=grad_steps,
log_every_n_steps=10,
fast_dev_run=_config["fast_dev_run"],
val_check_interval=_config["val_check_interval"],
strategy=strategy,
# show_progress_bar=False,
# progress_bar_refresh_rate=0
)
fs = get_filesystem(resume_ckpt)
if fs.exists(resume_ckpt):
with fs.open(resume_ckpt, "rb") as f:
ckpt = torch.load(f, map_location='cpu')
# This hacks pl wrong steps for logger
global_step_offset = ckpt["global_step"]
trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset
del ckpt
pass
else:
resume_ckpt = None
print("accumulate grad batches is: ", trainer.accumulate_grad_batches)
if not _config["test_only"]:
with torch.autograd.set_detect_anomaly(True):
trainer.fit(model, datamodule=dm, ckpt_path=resume_ckpt)
else:
trainer.test(model, datamodule=dm, ckpt_path=resume_ckpt)